Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96044
標題: Investigation for Ultraviolet Sterilization of Yam Mucilage and Microwave and Catalyst on Preparation of Biodiesel
紫外線於山藥黏質液之殺菌暨微波及催化劑在生質柴油製備之研究
作者: Chien-Hsiu Hung
洪千琇
關鍵字: 電磁波
紫外光殺菌
微波
轉酯化反應
催化劑
Electromagnetic waves
ultraviolet sterilization
microwave
transesterification reaction
catalyst
引用: 第一章參考文獻 Azcan, N.; Danisman, A. Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel 2007, 86, 2639–2644. Azcan, N.; Danisman, A. Microwave assisted transesterification of rapeseed oil. Fuel 2008, 87, 1781–1788. Azcan, N.; Yilmaz, O. Microwave assisted transesterification of waste frying oil and concentrate methyl ester content of biodiesel by molecular distillation. Fuel 2013, 104, 614–619. Bintsis, T.; Robinson R. K.; Litopoulou-Tzanetaki, E. Existing and Potential Applications of Ultraviolet Light in the Food Industry--a Critical Review. Journal of the Science of Food and Agriculture 2000, 80, 637-645. Choedkiatsakul, I.; Ngaosuwan, K.; Assabumrungrat, S.; Mantegna, S.; Cravotto, G. Biodiesel production in a novel continuous flow microwave reactor. Renewable Energy 2015, 83, 25-29. EIA. (n.d.a). International Energy Statistics, 2017. (accessed 17.07.17).<〈http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm〉>. [dataset] EIA. (n.d.b). Monthly biodiesel production report, 2017. Accessed February 2. <〈http://www.eia.gov/biofuels/biodiesel/production/archive/〉>. Fu, Y. C. Method for separating mucilage and starch from a plant root or stem. R.O.C. patent no. 204, 820, 2004a. Fu, Y.C. Fundamentals and industrial applications of microwave and radio frequency in food processing, in: Smith, J.S., Hui, Y.H. (Eds.), Food processing: principles and applications. Blackwell Publishers, U.K, 2004b, chapter 4, pp. 79-100. Fu, Y. C.; Huang, P. Y.; Chu, C. J. Use of continuous bubble separation process for separating and recovering starch and mucilage from yam (Dioscorea pseudojaponica yamamoto). LWT- Food Science and Technology 2005, 38, 735–744. Fu, Y.C. Microwave heating in food processing, in: Hui, Y. H. (Eds.), Handbook of Food Science, Technology, and Engineering. CRC Press/Taylor & Francis, New York, 2006, chapter 125, volume 3, pp. 125-1-15. Hernando, J.; Leton, P.; Matia, M.P.; Novella, J.L.; Alvarez-Builla, J. Biodiesel and FAME synthesis assisted by microwave: Homogenous batch and flow processes. Fuel 2007, 86, 1641–1644. Islam, A.; Taufiq-Yap Y. H.; Chu, C.-M.; Chan, E.-S.; Ravindra, P. Studies on design of heterogeneous catalysts for biodiesel production. Process Safety and Environmental Protection 2013, 91, 131–144. Jermolovicius, L. A.; Cantagesso, L. C.M.; do Nascimento, R. B.; de Castro, E. R.; dos S. Pouzada, E. V.; Senise, J. T. Microwave fast-tracking biodiesel production. Chemical Engineering & Processing: Process Intensification 2017, 122, 380–388. Kumar, R., Kumar, G.R. Chandrashekar, N. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production. Bioresource Technology 2011, 102, 6617–6620. Lee, A. F.; Bennett, J. A.; Manayil, J. C.; Wilson, K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chemical Society Reviews 2014, 43, 7887-7916. Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis-a review. Tetrahedron 2001, 57, 9225–9283. Ma, F.; Hanna, M. A. Biodiesel production: a review. Bioresource Technology 1999, 70, 1-15. Mazubert, A.; Taylor, C.; Aubin, J.; Poux, M. Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production. Bioresource Technology 2014, 161, 270–279. OECD/FAO. OECD-FAO Agricultural Outlook 2014. REN 21. Renewables 2016 global status report, 2016. <〈http://www.ren21.net/statusof-renewables/global-status-report/〉>. Reijnders, L. Conditions for the sustainability of biomass based fuel use. Energy Policy 2006, 34, 863-876. Thitsartarn, W.; Kawi, S. An active and stable CaO–CeO2 catalyst for transesterification of oil to biodiesel. Green Chemistry 2011, 13, 3423-3430. USDA. (n.d.a). Biofuels Annual Reports. Published GAIN reports, 2017.(accessed 17.07.17).<〈http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Forms/AllItems.aspx〉>. World Bank. GEM commodities database; n.d. Accessed February 2, 2017. 〈http://data.worldbank.org/data-catalog/commodity-price-data〉. 第二章參考文獻 Abbas, A. K.; Pober, J. S.; Lichtman, A. H. Cellular and molecular immunology. (5th ed). Cambridge: Elsevier Science, 2003. Alves, R. M.; Grossmann, V.; Ferrero, C.; Zaritzky, N. E.; Martino, M. N.; Sierakoski, M. R. Chemical and functional characterization of products obtained from yam tubers. Starch/Stärke 2002, 54, 476-481. Anonymous. Starch containing plants: yams. Denmark: Science Park Aarhus Intl. Starch Inst. Available from: http://www.starch.dk. Accessed 10 Nov. 04, 2004. Banerjee, R.; Agnihotri, R.; Bhattacharya, B. C. Purification of alkaline protease of Rhizopus oryzae by foam fractionation. Bioprocess Engineering 1993, 9, 245-248. Bintsis, T.; Robinson R. K.; Litopoulou-Tzanetaki, E. Existing and Potential Applications of Ultraviolet Light in the Food Industry--a Critical Review. Journal of the Science of Food and Agriculture 2000, 80, 637-645. Brown, A. K.; Kaul, A.; Varley, J. Continuous foaming for protein recovery. I. Recovery of beta-casein. Biotechnology and Bioengineering 1999a, 62, 278-290. Brown, A. K.; Kaul, A.; Varley, J. Continuous foaming for protein recovery. II. Recovery of proteins from binary mixtures. Biotechnology and Bioengineering 1999b, 62, 291-300. Chang, H. C.; Na C.; Hsieh, M. T.; Kan, W. S.; Chang, Y. S.; Liu, S. Y.; Liou, P. C.; Chang, Y. M. Study on new varieties of Dioscorea alata L. in Taiwan and its isozymes. Proceedings of a symposium on development and utilization of resources of medicinal plants in Taiwan. TARI special publication 1995, No. 48. p 49–68. Cheng, S. R.; Chiang, W. C. A. Study on the feasibility of bubble separation of cellulase and lipase. Journal of the Chinese Agricultural Chemical Society 1982, 20, 153-159. Chiang, W. C.; Iibuchi, S.; Yano. T. Single- and multi-component adsorption equilibria in bubble separation of organic materials. Agricultural and Biological Chemistry 1980, 44, 1803-1809. Cooper, G. M.; Hausman, R. E. The cell: a molecular approach. (3rd ed). Mass.: Sinauer Associates, 1997. Desai, D.; Kumar, R. Flow through a Plateau border of cellular foam. Chemical Engineering Science 1982, 3, 1361–1370. Desai, D.; Kumar, R. Liquid holdup in semi-batch cellular foams. Chemical Engineering Science 1983, 38, 1525–1534. Djerassi, C. Drugs from third world plants: The future. Science 1992, 258, 203–204. Fellows, P. Food processing technology: principles and practice, Woodhead Publishing Limited, Cambridge, 2000. Fu, Y. C.; Yeh, C. H.; Mou, Y. C.; Lu, S. The influence of mucin and cellulose on the yield of yam starch. Journal of the Agricultural Association of China 2002, 3, 216-227. Fu, Y. C. Method for separating mucilage and starch from a plant root or stem. R.O.C. patent no. 204,820, 2004. Fu, Y. C.; Mou, Y. C.; Yeh, C. H. Studies on the separation and recovery of polysaccharides and proteins from tuber of Keelung yam (D. pseudojaponica Yamamoto) and Yangmingshan yam (native species) (D. alata L.) using adsorptive bubble separation (ABS). Taiwan Journal of Agricultural and Food Chemistry 2003, 41, 325-335. Fu, Y. C.; Chen, S.; Lai, Y. J. Centrifugation and foam fractionation effect on mucilage recovery from Dioscorea (Yam) Tuber. Journal of Food Science 2004, 69, 509-514 Fu, Y. C.; Chen, S. H.; Huang, P. Y.; Li, Y. J. Application of Bubble Separation for Quantitative Analysis of Choline in Dioscorea (Yam) Tubers. Journal of Agricultural and Food Chemistry 2005, 53, 2392-2398 Fu, Y. C.; Huang, P. Y.; Chu, C. J. Use of continuous bubble separation process for separating and recovering starch and mucilage from yam (Dioscorea pseudojaponica yamamoto). LWT- Food Science and Technology 2005, 38, 735–744. Fu, Y. C.; Ferng, L. H.; Huang, P.Y. Quantitative analysis of allantoin and allantoic acid in yam tuber, mucilage, skin and bulbil of the Dioscorea species. Food Chemistry 2006, 94, 541–549. Gehle, R. D.; Schugerl, K. Protein recovery by continuous flotation. Applied Microbiology and Biotechnology 1984, 20, 133. Hartland, S.; Barber, A. D. A model for cellular foam. Transactions of the Institution of Chemical Engineers 1974, 52, 43-52. Hikino, H.; Konno, C.; Takahashi, M.; Murakami, M.; Kato, Y.; Karikura, M.; Hayashi, T. Isolation and hypoglycemic activity of dioscorans A, B, C, D, E, and F; glycans of Dioscorea japonica Rhizophors. Planta Medica 1986, 52, 168–171. Hou, W. C.; Hsu, F. L.; Lee, M. H. Yam (Dioscorea batatas) tuber mucilage exhibited antioxidant activities in vitro. Planta Medica 2002, 68, 1072–1076. Iibuchi, S.; Chiang, W. C.; Yano, T. Optimum particle size and air flow rate in bubble separation of isoelectric casein coagula. Agricultural and Biological Chemistry 1980, 44, 1811-1816. Lalchev, Z.; Exerowa, D. Concentration of proteins by foaming. Biotechnology and Bioengeering 1981, 23, 669-676. Lalchev, Z.; Dimitrova, L.; Tzvetkova, P.; Exerowa, D. Foam separation of DNA and proteins from solutions. Biotechnology and Bioengeering 1981, 24, 2253-2262. Liu, H. S.; Wang, S. S.; Chiou, T. W. Concentrating bovine serum albumin by foam separation. Journal of the Chinese Colloid and Interface Society 1995, 18, 53-60. Lodish, H.; Matsudaira, P.; Berk, A.; Zipursky, S. L.; Scott, M. P. Molecular cell biology. (5th ed.). New York: W.H. Freeman and Co. and Chinese Union Medical Univ., joint publishing. 2003, pp 1092–1093. Ma, J. G.; Xiu, Z. L.; Zhang, D. J.; Jia, L. Y. Concentration and separation of glycyrrhizic acid by foam separation. Journal of Chemical Technology & Biotechnology 2002, 77, 720-724. Maricel, K.; Nel, W.; Gouws, P.; Műlller, I.; Cilliers, F. Ultraviolet Radiation as a Non-thermal Treatment for the Inactivation of Microorganisms in Fruit Juice. Innovative Food Science & Emerging Technologies 2008, 9, 348-354. Mirkin, G. Estrogen in yams. Journal of the American Medical Association 1991, 265, 912. Misaki, A.; Ito, T.; Harada, T. Constitutional studies on the mucilage of 'yamanoimo,' Dioscorea batatas Decne, forma Tsukune: Isolation and structure of a mannan. Agricultural Biology and Chemistry 1972, 36, 761–771. Montero, G. A.; Kirschner, T. F.; Tanner, D. Bubble and foam concentration of cellulase. Applied Biochemistry and Biotechnology 1933, 39, 467-475. Narsimhan, G.; Ruckenstein, E. Effect of bubble size distribution on the enrichment and collapse in foams. Langmuir 1986a, 2, 494–508. Narsimhan, G.; Ruckenstein, E. Hydrodynamics, enrichment, and collapse in foams. Langmuir 1986b, 2, 230–238. Ozo, O.-N.; Robinson, J.-M.; Reeves, S.-G. The occurrence of allantoin in edible yams (Dioscorea species). Human Nutrition: Food Science Nutrition 1987, 41, 231–232. Parlar, H. Influence of selected parameters on the isoelectric adsorptive bubble separation (IABS) of potato proteins. Advances in Food Sciences 2001, 23, 2-10. Prokop, A.; Tanner, R. D. Foam fractionation of proteins: potential for separations from dilute starch suspensions. Starch/Staerke 1993, 45, 150-154. Sagara, K.; Suto, K.; Kawaura, M.; Yoshida, T. Analysis of Dioscorea rhizoma. Pharmaceutical Technology of Japan 1988, 4, 811–813. Sarkar, P.; Bhattacharya, R. N.; Mukherjea, M. Isolation and purification of protease from human placenta by foam fractionation. Biotechnology and Bioengineering 1987, 29, 934-940. Save, S. V.; Pangarkar, V. G. Harvesting of Saccharomyces cerevisiae using colloidal gas aphrons. Journal of Chemical Technology Biotechnology 1995, 62, 92-99. Thomas, A.; Winkler, M. A. Foam separation of biological materials. In: A. Weisman (Ed.) Topics in Enzyme and Fermentation Biotechnology, Vol. 1. (pp. 43-71). Ellis Harwood: U. K, 1977. Tsai, S. S.; Tai, F. J. Studies on the mucilage from tuber of yam (Dioscorea alata Linn.) I. Isolation and purification of the mucilage. China Journal of Agricultural Chemical Society 1984, 22, 88–94. Uraizee, F.; Narsimhan, G. Foam fractionation of proteins and enzymes: I. Applications. Enzyme and Microbial Technology 1990a, 12, 232-233. Uraizee, F.; Narsimhan, G. Foam fractionation of proteins and enzymes: II. Performance and modelling. Enzyme and Microbial Technology 1990b, 12, 315-316. Yano, T.; Nakamura, K.; Iibuchi, S.; Kimura, A. Recovery of proteins from waste water by bubble separation. Report of the National Food Research Institute of Japan 1978, 33, 339-345. 第三章參考文獻 AOAC. Official method of Analysis. (12th ed). Washington, DC: Association of Official Analytical Chemists, 2002. Azcan, N.; Danisman, A. Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel 2007, 86, 2639-2644. Azcan, N.; Danisman, A. Microwave assisted transesterification of rapeseed oil. Fuel 2008, 87, 1781–1788. Barnard, T. M.; Leadbeater, N. E.; Boucher, M. B.; Stencel, L. M.; Wilhite, B. A. Continuousflow preparation of biodiesel using microwave heating. Energy & Fuels 2007, 21, 1777–1781. Bowman, M. D.; Holcomb, J. L.; Kormos, C. M.; Leadbeater, N. E.; Williams, V. A. Approaches for scale-up of microwave-promoted reactions. Organic Process Research & Development 2008, 12, 41–57. Bundhoo, Z. M. A. Microwave-assisted conversion of biomass and waste materials to biofuels. Renewable and Sustainable Energy Reviews 2018, 82, 1149-1177. Carslaw, H. S.; Jaeger, J. C. Conduction of heat in solids. Oxford, England: Oxford University Press, 1959. Duz, M. Z.; Saydut, A.; Ozturk, G. Alkali catalyzed transesterification of safflower seed oil assisted by microwave irradiation. Fuel Processing Technology 2011, 92, 308–313. Fu, Y. C.; Tong, C. H.; Lund, D. B. Moisture migration in solid food matrices. Journal of Food Science 2003, 68, 2497-2503. Fu, Y. C. Fundamentals and industrial applications of microwave and radio frequency in food processing. In: J. S. Smith, & Y. H. Hui, (Eds.), Food processing: principles and applications (pp. 79-100). Iowa: Blackwell Publishing, 2004. Fu, Y. C. Microwave heating in food processing. In: Y. H. Hui, (Eds.), Handbook of Food Science, Technology and Engineering (pp. 125-1-15). New York: CRC Press/Taylor & Francis, 2006. Fu, Y. C. Flavor migration in solid food matrices. In: Y. H. Hui, & L. Nollet (Eds.), Handbook of Food Products Manufacturing (pp. 389-413). New York: John Wiley & Sons, Inc, 2007. Groisman, Y.; Gedanken, A. Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. Journal of Physical Chemistry 2008, 112, 8802-8808. Hayes, B. L. Microwave synthesis: chemistry at the speed of light. Matthews, NC: CEM Publishing, 2002. Hernando, J.; Leton, P.; Matia, M. P.; Novella, J. L.; Alvarez-Builla, J. Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes. Fuel 2007, 86, 1641-1644. Hong. I. K.; Jeon, H.; Kim, H.; Lee, S. B. Preparation of waste cooking oil based biodiesel using microwave irradiation energy. Journal of Industrial and Engineering Chemistry 2016, 42, 107–112. Kappe, C. O. Controlled microwave heating in modern organic synthesis. Angewandte Chemie-International Edition, 2004, 43, 6250-6284. Koopmans, C.; Iannelli, M.; Kerep, P.; Klink, M.; Schmitz, S.; Sinnwell, S.; Ritter, H. Microwave-assisted polymer chemistry: Heck-reaction, transesterification, baeyer–villiger oxidation, oxazoline polymerization, acrylamides, and porous materials. Tetrahedron 2006, 62, 4709–4714. Leadbeater, N. E.; Stencel, L. M. Fast, easy preparation of biodiesel using microwave heating. Energy & Fuels 2006, 20, 2281-2283. Leadbeater, N. E.; Barnard, T. M.; Stencel, L. M. Batch and continuous-flow preparation of biodiesel derived from butanol and facilitated by microwave heating. Energy & Fuels 2008, 22, 2005–2008. Lertsathapornsuk, V.; Pairintra, R.; Aryusuk, K.; Krisnangkura, K. Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator. Fuel Processing Technology 2008, 89, 1330-1336. Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis - a review. Tetrahedron 2001, 57, 9225-9283. Lin, J.-J.; Chen, Y.-W. Production of biodiesel by transesterification of Jatropha oil with microwave heating. Journal of the Taiwan Institute of Chemical Engineers 2017, 75, 43-50. Loupy, A. Microwaves in organic synthesis. (2nd ed.). Weinheim, Germany: Wiley-VCH Publishing, 2006. Majewski, M. W.; Pollack, S. A.; Curtis-Palmer, V. A. Diphenylammonium salt catalysts for microwave assisted triglyceride transesterification of corn and soybean oil for biodiesel production. Tetrahedron Letters 2009, 50, 5175–5177. Melo-Júnior, C. A. R.; Albuquerque, C. E. R.; Fortuny, M.; Dariva, C.; Egues, S.; Santos, A. F.; Ramos, A. L. D. Use of microwave irradiation in the noncatalytic esterification of C18 fatty acids. Energy & Fuels 2009, 23, 580–585. Metaxas, A. C. Foundations of electroheat. New York: Wiley Publishing, 1996. Muley, P. D.; Boldor, D. Investigation of microwave dielectric properties of biodiesel components. Bioresource Technology 2013, 127, 165-174. Muralidharan, N.G.; Ranjitha, J. Microwave assisted biodiesel production from dairy waste scum oil using alkali catalysts. International Journal of ChemTech Research 2015, 8, 167–174. Patil, P. D.; Gude, V. G.; Camacho, L. M.; Deng, S. Microwave-assisted catalytic transesterification of Camelina Sativa oil. Energy & Fuels 2010, 24, 1298-1304. Perin, G.; Álvaro, G.; Westphal, E.; Viana, L. H.; Jacob, R. G.; Lenardão, E. J.; D'Oca, M. G. M. Transesterification of castor oil assisted by microwave irradiation. Fuel 2008, 87, 2838–2841. Suppalakpanya, K.; Ratanawilai, S. B.; Tongurai, C. Production of ethyl ester from esterified crude palm oil by microwave with dry washing by bleaching earth. Applied Energy 2010a, 87, 2356-2359. Suppalakpanya, K.; Ratanawilai, S. B.; Tongurai, C. (2010b). Production of ethyl ester from crude palm oil by two-step reaction with a microwave system. Fuel 2010b, 89, 2140-2144. Venkatesh Kamath, H.; Regupathi, I.; Saidutta, M. B. Optimization of two step karanja biodiesel synthesis under microwave irradiation. Fuel Processing Technology 2011, 92, 100–105. Yuan, H.; Yang, B. L.; Zhu, G. L. Synthesis of biodiesel using microwave absorption catalysts. Energy & Fuels 2009, 23, 548-552. 第四章參考文獻 AOAC. AOAC official method 996.06. Fat (total, saturated, and unsaturated) in foods, AOAC international, Gaithersburg, USA, 2002. Bowman, M. D.; Holcomb, J. L.; Kormos, C. M.; Leadbeater, N. E.; Williams, V. A. Approaches for scale-up of microwave-promoted reactions. Organic Process Research & Development 2008, 212, 41–57. Campos, D. C.; Dall'Oglio, E. L.; Sousa Jr, P. T. D.; Vasconcelos, L. G.; Kuhnen, C. A. Investigation of dielectric properties of the reaction mixture during the acid-catalyzed transesterification of Brazil nut oil for biodiesel production. Fuel 2014, 117, 957-965. Choedkiatsakul, I.; Ngaosuwan, K.; Assabumrungrat, S.; Mantegna, S.; Gravotto, G. Biodiesel production in a novel continuous flow microwave reactor. Renewable Energy 2015, 83, 25-29. Dhar, B. R.; Kirtania, K. Excess methanol recovery in biodiesel production process using a distillation column: a simulation study. Chemical Engineering Research Bulletin 2009, 13, 55-60. Estel, L.; Poux, M.; Benamara, N.; Polaert, I. Continuous flow-microwave reactor: Where are we? Chemical Engineering and Processing: Process Intensification 2017, 113, 56-64. Gabriel, K. C. P.; Barros, A. A. C.; Correia, M. J. N. Study of molar ratio in biodiesel production from palm oil, International Association for Management of Technology, in: IAMOT Conference 2015, 434-442. Gillespie, P. M. Microwave chemistry – an approach to the assessment of chemical reaction hazards, Symposium Series. Published as IChemE Symposium series no. 150, 2004. Gude, V. G.; Patil, P.; Martinez-Guerra, E.; Deng, S.; Nirmalakhandan, N. Microwave energy potential for biodiesel production. Sustainable Chemical Processes 2013, 1, 1-31. Ionescu, M. in: RAPRA (Eds.) Polyols from renewable resources, Chemistry and Technology of Polyols for Polyurethanes, UK, 2005, pp. 435-470. Koopmans, C.; Iannelli, M.; Kerep, P.; Klink, M.; Schmitz, S.; Sinnwell, S. Microwave-assisted polymer chemistry: heck-reaction, transesterification, Baeyer-Villiger oxidation, oxazoline polymerization, acrylamides, and porous materials. Tetrahedron 2006, 62, 4709–4714. Leonelli, C.; Veronesi, P. in: Fang, Z.; Smith Jr, R. L.; Qi, X. (Eds.) Microwave Reactors for Chemical Synthesis and Biofuels Preparation, Production of biofuels and chemicals with microwave. Springer Netherlands 2015, pp. 17-40. Lin, J.-J.; Chen, Y.-W. Production of biodiesel by transesterification of Jatropha oil with microwave heating. Journal of the Taiwan Institute of Chemical Engineers 2017, 75, 43-50. Majetich, G.; Hicks, R. The use of microwave heating to promote organic reactions. The Journal of Microwave Power and Electromagnetic Energy 1994, 30, 27-45. Mazo, P. C.; Rios, L. A. Esterification and transesterification assisted by microwave of crude palm oil, heterogeneous catalysis. Latin American Applied Research 2010, 40, 343-349. Moser, B. R. Biodiesel production, properties, and feedstocks. In Vitro Cellular & Developmental Biology – Plant 2009, 45, 229-266. Motasemi, F.; Ani, F. N. A review on microwave-assisted production of biodiesel. Renewable & Sustainable Energy Reviews 2012, 16, 4719-4733. Muley, P. D.; Boldor, D. Investigation of microwave dielectric properties of biodiesel components. Bioresource Technology 2013, 127, 165-174. Naylor, R. L.; Higgins, M. M. The rise in global biodiesel production: Implications for food security. Global Food Security xxxx, xxx, xxx–xxx. https://doi.org/10.1016/j.gfs.2017.10.004 Pieprzyk, B.; Kortluke, N. Substitution of biofuels for fossil fuels. 2010, 1-8. Retrieved from Energy Research Architecture Website: http://www.era-er.com/uploaded/content/ proyecto/1368197392.pdf. Sajjadi, B.; Abdul Aziz, A. R.; Ibrahim, S. Investigation, modelling and reviewing the effective parameters in microwave-assisted transesterification. Renewable & Sustainable Energy Reviews 2014, 37, 762-777. Tangy, A.; Pulidindi, I. N.; Perkas, N.; Gedanken, A. Continuous flow through a microwave oven for the large-scale production of biodiesel from waste cooking oil. Bioresource Technology 2017, 224, 333-341. Vyas, A. P.; Verma, J. L.; Subrahmanyam, N. Effects of molar ratio, alkali catalyst concentration and temperature on transesterification of Jatropha oil with methanol under ultrasonic irradiation. Journal of Computational Electronics 2011, 1, 45-50. Yusoff, M. F. M.; Xu, X.; Guo, Z. Comparison of fatty acid methyl and ethyl esters as biodiesel base stock: a review on processing and production requirements. Journal of the American Oil Chemists' Society 2014, 91, 525-531. 第五章參考文獻 Banga, S.; Varshney, P. K. Effect of impurities on performance of biodiesel: A review. Journal of Scientific & Industrial Research 2010, 575-579. Berlan, J. Microwaves in chemistry: another way of heating reaction mixtures. Radiation Physics and Chemistry 1995, 45, 581–589. Cao, P.; Tremblay, A. Y.; Dubé, M. A.; Morse, K. Effect of membrane pore size on the performance of a membrane reactor for biodiesel production. Industrial & Engineering Chemistry Research 2007, 46, 52–58. Cao, P.; Tremblay, A. Y.; Dubé, M. A. Kinetics of canola oil transesterification in a membrane reactor. Industrial & Engineering Chemistry Research 2009, 48, 2533–2541. Cheng, L. H.; Yen, S. Y.; Su, L. S.; Chen, J. Study on membrane reactors for biodiesel production by phase behaviors of canola oil methanolysis in batch reactors. Bioresource Technology 2010, 101, 6663–6668. Chungcharoen, T.; Netjaibun, K.; Pratabkong, T.; Suwannasam, P.; Limmun, W. Effects of inner angle of bowl, flow rate and speed on the efficiency of glycerol separation from the raw biodiesel using cylindrical bowl centrifuge. Energy Procedia 2017, 138, 405-410. Collins, M. J. Microwave synthesis: chemistry at the speed of light, in: Hayes L.D. (Eds.). CEM Publishing, Mathews, 2002. Da Silva, N. L.; Garnica, J. A. G.; Batistella, C. B.; Wolf Maciel, M. R. Use of experimental design to investigate biodiesel production by multiple-stage Ultra-Shear reactor. Bioresource Technology 2001, 102, 2672–2677. Dimiana, A. C.; Bildeab, C. S.; Omota, F.; Kiss, A. A. Innovative process for fatty acid esters by dual reactive distillation. Computers & Chemical Engineering 2009, 33, 743–750. Dubé, M. A.; Tremblay, A. Y.; Liu, J. Biodiesel production using a membrane reactor. Bioresource Technology 2007, 98, 639-647. Fu, Y. C. Fundamentals and industrial applications of microwave and radio frequency in food processing, in: Smith, J.S., Hui, Y.H. (Eds.), Food processing: principles and applications. Blackwell Publishers, U.K, 2004, chapter 4, pp. 79-100. Fu, Y. C. Microwave heating in food processing, in: Hui, Y. H. (Eds.), Handbook of Food Science, Technology, and Engineering. CRC Press/Taylor & Francis, New York, 2006, chapter 125, volume 3, pp. 125-1-15. Fu, Y. C. Flavor migration in solid food matrices, in: Hui, Y.H., Nollet, L. (Eds.), Handbook of Food Products Manufacturing. John Wiley & Sons, Inc., New York, USA, 2007, chapter 18, pp. 389-413. Gomes, M. C. S.; Arroyo, P. A.; Pereira, N. C. Influence of acidified water addition on the biodiesel and glycerol separation through membrane technology. Journal of Membrane Science 2013, 431, 28–36. Hájek, M. Microave catalysis in organic synthesis, in: Loupy, A. (Eds.), Microwaves in organic synthesis. Wiley-VCH Verlag GmbH and Co., Germany, 2002, pp. 345-378. Kumar, R.; Kumar, G. R.; Chandrashekar, N. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production. Bioresource Technology 2011, 102, 6617–6620. Liu, J.; Takda, R.; Karita, S.; Watanabe, T.; Honda, Y.; Watanabe, T. Microwave assisted pretreatment of recalcitrant softwood in aqueous glycerol. Bioresource Technology 2010, 101, 9355–9360. Loupy, A. Microwaves in organic synthesis. Weinheim, Wiley-VCH Verlag GmbH and Co., Germany, 2002. Maria, C. S. G.; Nehemias, C. P.; Davantel de Barros, S. T. Separation of biodiesel and glycerol using ceramic membranes. Journal of Membrane Science 2010, 352, 271-276. Meher, L.C.; Dharmagadda, V. S.; Naik, S.N. Optimisation of alkali catalyzed transesterification of Pongamiapinnata oil for production of biodiesel. Bioresource Technology 2006, 97, 1392–1397. Miranda-Galindo, E. Y.; Segovia-Hernández, J. G.; Hernandez, S.; Álvarez, G. R.; Gutiérrez-Antonio, C.; Briones-Ramírez, A. Design of reactive distillation with thermal coupling for the synthesis of biodiesel using genetic algorithms. Computer Aided Chemical Engineering 2009, 26, 549–554. Omota, F.; Dimian, A. C.; Bliek, A. Fatty acid esterification by reactive distillation. Part1: equilibrium-based design. Chemical Engineering Science 2003, 58, 3159–3174. Stuerga, D.; Gaillard, P. Microwave heating as a new way to induce localized enhancements of reaction rate. Non-isothermal and heterogeneous kinetics. Tetrahedron 1996, 52, 5505–5510. Van Gerpen, J.; Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G. Biodiesel production technology: August 2002–January 2004. National renewable energy laboratory, NREL/SR-510-36244. 第六章參考文獻 Albuquerque, M. C. G.; Santamaría-González, J.; Mérida-Robles, J. M.; Moreno-Tost, R.; Rodríguez-Castellón, E.; Jiménez-López, Antonio; Azevedo Diana C.S.; Cavalcante Jr. Celio L.; Maireles-Torres, P. MgM (M = Al and Ca) oxides as basic catalysts in transesterification processes. Applied Catalysis A: General 2008a, 347, 162-168. Albuquerque, M. C. G.; Jime´nez-Urbistondo, I.; Santamaría-González, J.; Mérida-Robles, J. M.; Moreno-Tost, R.; Rodríguez-Castellón, E.; Jiménez-López, A.; Azevedo, D. C. S.; Cavalcante Jr., C. L.; Maireles-Torres, P. CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Applied Catalysis A: General 2008b, 334, 35–43. Atadashi, I. M.; Aroua, M. K.; Abdul Aziz, A. R.; Sulaiman, N. M. N. The effects of catalysts in biodiesel production: a review. Journal of Industrial and Engineering Chemistry 2013, 19, 14-26. Bobade, V. V.; Kulkarni, K. S.; Kulkarni, A. D. Application of heterogeneous catalyst for the production of biodiesel. International Journal of Advances in Engineering & Technology 2011, 2, 184-185. Boeya, P. L.; Maniama, G. P.; Hamid, S. A.; Hamid, A. Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: A review. Chemical Engineering Journal 2011, 168, 15–22. Bond, G. C.; Webb, G.; Malinowski, S.; Marczewski, M. Catalysis by solid acids and bases. In catalysis: volume 8. Bond, G. C.; Webb, G. (Eds). 1989; pp. 141. Carvalho, M. S.; Mendonça, M. A.; Pinho, D. M. M.; Resck, I. S.; Suarez, P. A. Z. Chromatographic analyses of fatty acid methyl esters by HPLC-UV and GC-FID. Journal of the Brazilian Chemical Society 2012, 23, 763-769. Chang, J.-R.; Huang, S.-M. Pd/Al2O3 Catalysts for Selective Hydrogenation of polystyrene-block-polybutadiene-block-polystyrene thermoplastic elastomers. Industrial & Engineering Chemistry Research 1998, 37, 1220-1227. Chiu, T.-M. Catalytic properties of Pt / TS-1 catalysis – synthesis and characterization. Master thesis, Department of Chemical Engineering, National Chung Cheng University, 2006. Chizallet C.; Costentin G.; Che M.; Delbecq F.; Sautet P. Infrared characterization of hydroxyl groups on MgO: a periodic and cluster density functional theory study. Journal of the American Chemical Society 2007, 129, 6442–6452. Condon, J. B. Surface area and porosity determinations by physisorption measurements and theory; Elsevier: UK, 2006. Corma, A.; Iborra, S. Optimization of alkaline earth metal oxide and hydroxide catalysts for base-catalyzed reactions. Advances in Catalysis 2006, 49, 239–302. Cullity, B. D.; Stock, S. R. Elements of X-ray diffraction, 2nd ed.; Prentice-Hall Inc., 2001; pp. 292, 402-403. Di Cosimo, J. I.; Díez, V. K.; Ferretti, C.; Apesteguía, C. R. Basic catalysis on MgO: generation, characterization and catalytic properties of active sites. Catalysis 2014, 26, 1–28. Di Serio, M.; Ledda, M.; Cozzolino, M.; Minutillo, G.; Tesser, R.; Santacesaria, E. Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Industrial & Engineering Chemistry Research 2006, 45, 3009-3014. Di Serio, M.; Cozzolino, M.; Giordano, M.; Tesser, R.; Patrono, P.; Santacesaria, E. From homogeneous to heterogeneous catalysts in biodiesel production. Industrial & Engineering Chemistry Research 2007, 46, 6379-6384. Di Serio, M.; Tesser, R.; Pengmei, L.; Santacesaria, E. Heterogeneous catalysts for biodiesel production. Energy & Fuels 2008, 22, 207–217. Ejikeme, P. M.; Anyaogu, I. D.; Ejikeme, C. L.; Nwafor, N. P.; Egbuonu, C. A. C.; Ukogu, K.; Ibemesi, J. A. Catalysis in biodiesel production by transesterification processes-an insight. European Journal of Chemistry 2010, 7, 1120-1132. Freedman, B.; Pryde, E. H.; Mounts, T. L. Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists' Society 1984, 61, 1638-1643. Froment, G. F.; Bischoff, K. B. Chemical reactor analysis and design; John Wiley & Sons: New York, 1990; pp 145-157. Foster, M.; Furse, M.; Passno, D. An FTIR study of water thin films on magnesium oxide. Surface Science 2002, 502–503, 102–108. Hadiyanto, H.; Afianti, A. H.; Navi'a, U. I.; Adetya, N. P.; Widayat, W.; Sutanto, H. The development of heterogeneous catalyst C/CaO/NaOH from waste of green mussel shell (Perna varidis) for biodiesel synthesis. Journal of Environmental Chemical Engineering 2017, 5, 4559–4563. Hair, M. L. Infrared spectroscopy in surface chemistry; Marcel Dekker: New York, 1967; pp. 198-200. Hammersley, A. P. ESRF internal report; ESRF98HA01T, FIT2D V12.012 Reference Manual V6.0; 2004. Honji, A.; Cron, L. U.; Chang, J.-R.; Gates, B. C. Ligand effects in supported metal carbonyl: X-ray absorption spectroscopy of Rhenium subcarbonyls on magnesium oxide. Langmuir 1992, 8, 2715-2719. Hymavathi, D.; Prabhakar, G.; Sarath Babu, B. Biodiesel production from vegetable oils: an optimization process. International Journal of Clinical Pharmacology & Toxicology 2014, 4, 21-30. Islam, A.; Taufiq-Yap Y. H.; Chu, C.-M.; Chan, E.-S.; Ravindra, P. Studies on design of heterogeneous catalysts for biodiesel production. Process Safety and Environmental Protection 2013, 91, 131–144. Jahangir Alam, Md.; Ali Zaker Shawon, Sk. Md.; Sultana, M.; Waslkur Rahman, Md.; Maksudur Rahman Khan, Md. Kinetic study of biodiesel production from soybean oil. 2014 Power and Energy Systems: Towards Sustainable Energy (PESTSE), 14 March 2014, 432-4336, India. Jenkins, R.; Snyder, R. L. Introduction to X-ray powder diffractometry; John Wiley & Sons, Inc. 1996; pp. 236-241. Kesić, Ž.; Lukić, I.; Zdujić, M.; Mojović, L.; Skala, D. Calcium oxide based catalysts for biodiesel production: a review. Chemical Industry and Chemical Engineering Quarterly 2016, 22, 391-408. Kim, H.; Kang, B.; Kim, M.; Park, Y. M.; Kim, D.; Lee, J.; Lee, K. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today 2004, 93–95, 315–320. Kouzu, M.; Fujimori, A.; Suzuki, T.; Koshi, K.; Moriyasu, H. Industrial feasibility of powdery CaO catalyst for production of biodiesel. Fuel Processing Technology 2017, 165, 94–101. Lee, A. F.; Bennett, J. A.; Manayil, J. C.; Wilson, K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chemical Society Reviews 2014, 43, 7887-7916. Lee, D.; Park, Y.; Lee, K. Heterogeneous base catalysts for transesterification in biodiesel synthesis. Catalysis Surveys from Asia 2009, 13, 63–77. Lengye, J.; Cvengrošová, Z.; Cvengroš, J. Transesterification of triacylglycerols over calcium oxide as heterogeneous catalyst. Petroleum & Coal journal 2009, 51, 216-224. Li, X. H.; Dong, J. L.; Xiao, H. S.; Lu, P. D.; Hu, Y. A.; Zhang, Y. H. FTIR–ATR in situ observation on the efflorescence and deliquescence processes of Mg(NO3)2 aerosols. Science in China Series B-Chemistry 2008, 51,128-137. Little, L. H. Infrared spectra of adsorbed species; London: New York, 1966; pp. 250-261. Liu, X.; Piao, X.; Wang, Y.; Zhu, S.; He, H. Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol. Fuel 2008, 87, 1076–1082. López Granados, M.; Martín Alonso, D.; Alba-Rubio, A. C.; Mariscal, R.; Ojeda, M.; Brettes, P. Transesterification of triglycerides by CaO: increase of the reaction rate by biodiesel addition. Energy & Fuels 2009, 23, 2259–2263. López, D. E.; Goodwin Jr, J. G.; Bruce, D. A.; Lotero, E. Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General 2005, 295, 97-105. López Granados, M.; Martín Alonso, D.; Al ba-Rubio, A. C.; Mariscal, R.; Ojeda, M.; Brettes, P. Transesterification of triglycerides by CaO: increase of the reaction rate by biodiesel addition. Energy & Fuels 2009, 23, 2259–2263 Ma, F.; Hanna, M. A. Biodiesel production: a review. Bioresource Technology 1999, 70, 1-15. Margaritondo, G. Elements of synchrotron light: for biology, chemistry and medical research; Oxford University Press: USA, 2002. Masood, H.; Yunus, R.; Choong, T. S. Y.; Rashid, U.; Taufiq Yap, Y. H. Synthesis and characterization of calcium methoxide as heterogeneous catalyst for trimethylolpropane esters conversion reaction. Applied Catalysis A: General 2012, 425– 426, 184– 190. McKenna, K. P.; Sushko, P. V.; Shluger, A. L. Inside powders: a theoretical model of interfaces between MgO nanocrystallites. Journal of the American Chemical Society 2007, 129, 8600-8608. Meher, L. C.; Vidya Sagar, D.; Naik, S. N. Technical aspects of biodiesel production by transesterification—a review. Renewable & Sustainable Energy Reviews 2006, 10, 248-268. Montero, J. M.; Gai, P.; Wilson, K.; Lee, A. F. Structure-sensitive biodiesel synthesis over MgO nanocrystals. Green Chemistry 2009, 11, 265–268. Nakagaki, S.; Bail, A.; dos Santos, V. C.; de Souza, V. H. R.; Vrubel, H.; Nunes, Fábio S.; Ramos, L. P. Use of anhydrous sodium molybdate as an efficient heterogeneous catalyst for soybean oil methanolysis. Applied Catalysis A: General 2008, 351, 267-274. Nasreen, S.; Liu, H.; Lukic, I.; Qurashi, L. A.; Skala, D. Heterogeneous kinetics of vegetable oil transesterification at high temperature. Chemical Industry and Chemical Engineering Quarterly 2016, 22, 419−429. Nakatake, D.; Yazaki, R.; Matsushima, Y.; Ohshima, T. Transesterification reactions catalyzed by a recyclable heterogeneous Zinc/Imidazole catalyst. Advanced Synthesis & Catalysis 2016, 358, 2569–2574. Ngamcharussrivichai, C.; Totarat, P.; Bunyakiat, K. Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Applied Catalysis A: General 2008, 341, 77–85. Patil, P. D.; Deng, S. Transesterification of camelina sativa oil using heterogeneous metal oxide catalysts. Energy & Fuels 2009, 23, 4619–4624. Rabelo, S. N.; Ferraz, V. P.; Oliveira, L. S.; Franca, A. S. FTIR analysis for quantification of fatty acid methyl esters in biodiesel produced by microwave-assisted transesterification. International Journal of Environmental Science and Development 2015, 6, 964-969. Ramasamy, V.; Ponnusamy, V.; Sabari, S.; Anishia, S. R.; Gomathi, S. S. Effect of grinding on the crystal structure of recently excavated dolomite. Indian Journal of Pure & Applied Physics 2009, 47, 586-591. Romero, R.; Martínez, S. L.; Natividad, R. Biodiesel production by using heterogeneous catalysts. In Alternative Fuel. Manzanera, M. (Eds). 2011. Sakai, T.; Kawashima, A.; Koshikawa, T. Economic assessment of batch biodiesel production processes using homogeneous and heterogeneous alkali catalysts. Bioresource Technology 2009, 100(13), 3268-3276. Shearer, G. L. An evaluation of Fourier transform infrared spectroscopy for the characterization of organic compounds in art and archaeology. Ph.D. Thesis, University College London, UK, 1989. Sheu, H.-S.; Liu, P.-H.; Cheng, H.-L.; Chao, K.-J.; Chang, Y.-P. Structural characterization of porous film materials and the supported metal catalysts by synchrotron powder X-ray diffraction. Catalysis Today 2004, 97, 55–61. Singh, V.; Yadav, M.; Sharma, Y. C. Effect of co-solvent on biodiesel production using calcium aluminium oxide as a reusable catalyst and waste vegetable oil. Fuel 2017, 203, 360–369. Sudsakorn, K.; Saiwuttikul, S.; Palitsakun, S.; Seubsai, A.; Limtrakul, J. Biodiesel production from Jatropha Curcas oil using strontium-doped CaO/MgO catalyst. Journal of Environmental Chemical Engineering 2017, 5, 2845–2852. Su, J.; Li, Y.; Wang, H.; Yan, X.; Pan, D.; Fan, B.; Li, R. Super-microporous solid base MgO-ZrO2 composite and their application in biodiesel production. Chemical Physics Letters 2016, 663, 61–65. Talha, N. S.; Sulaiman, S. Overview of catalysis in biodiesel production. Journal of Engineering and Applied Sciences 2016, 11, 439-448. Thanh, L. T.; Okitsu, K.; Boi, L. V.; Maeda, Y. Catalytic technologies for biodiesel fuel production and utilization of glycerol: a review. Catalysts 2012, 2, 191-222. Thitsartarn, W.; Kawi, S. An active and stable CaO–CeO2 catalyst for transesterification of oil to biodiesel. Green Chemistry 2011, 13, 3423-3430. Thommes, M. Physical adsorption characterization of nanoporous materials. Chemie Ingenieur Technik 2010, 82, 1059-1073. Vahid, B. R.; Haghighi, M. Biodiesel production from sunflower oil over MgO/MgAl2O4 nanocatalyst: effect of fuel type on catalyst nanostructure and performance. Energy Conversion and Management 2017, 134, 290–300. Verziu, M.; Cojocaru, B.; Hu, J.; Richards, R.; Ciuculescu, C.; Filip, P.; Parvulescu, V. I. Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chemistry 2008, 10, 373–381 Watanabe, Y.; Shimada, Y.; Sugihara, A. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. Journal of the American Oil Chemists' Society 2000, 77, 355-360. Xu, S.; Zeng, H.-Y.; Cheng, C.-R.; Duan, H.-Z.; Han, J.; Dinga, P.-X. Xiao, G.-F. Mg–Fe mixed oxides as solid base catalysts for the transesterification of microalgae oil. RSC Advances 2015, 5, 71278-71286. Yacob, A. R.; Mustajab, M. K. A. A.; Samadi, N. S. Calcination temperature of nano MgO effect on base transesterification of palm oil. World Academy of Science, Engineering and Technology 2009, 32, 408-412. Yao, Y.; Huang, W. An effective regeneration method for CaO/MgO catalyst used in biodiesel synthesis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2011, 34, 261-266 Zabeti, M.; Daud, W. M. A. W.; Aroua, M. K. Activity of solid catalysts for biodiesel production: a review. Fuel Processing Technology 2009, 90, 770–777.
摘要: 電磁波的種類很多,應用範圍也很廣,從食品加工、化工產業至高科技皆可使用電磁波,紫外線和微波皆是電磁波的一部分。相較於傳統方法,不論是紫外光或微波等電磁波在食品加工和化工產業的表現更佳,效率也更高。然而,目前研究皆只局限於實驗型小量的探討,故有必要針對放大量產進一步探討其應用的可行性。本研究一方面針對泡沫分離山藥黏質液的過程中,探討結合紫外光殺菌的可行性;另一方面也探討微波應用於轉酯化反應生產生質柴油的效果,同時研究開發一種可再生型催化劑。 在紫外光殺菌方面,本研究主要延用本實驗室所設計出的連續式泡沫分離法,回收山藥黏質液,探討利用紫外光殺菌法抑制山藥黏質液中微生物的效果。結果顯示使用254 nm紫外光(照射劑量為32000μW /sec/cm2 )照射200秒後,微生物的量幾乎就趨近於零,且常見的食品病原菌E. coli 和Salmonella也都呈現陰性反應,表示應用紫外光殺菌可有效減少山藥黏質液中的微生物。 在微波應用於大豆油和甲醇的轉酯化反應產生生質柴油的研究中,實驗結果顯示使用微波可縮短反應時間並增加整體轉酯化反應效率,相較於傳統方法,微波輔助反應的生質柴油產率更高。在此研究中發現,甲醇與大豆油之最適莫耳比為9:1,也從實驗結果得知,副產物的囤積是抑制正反應持續進行的重要因素。同時,甲醇於後續反應的額外添加有利於正反應的進行,並使FAME產率達到100%。若在反應過程中加入甘油靜置分離步驟,反應時間可縮短至6分鐘,且FAME產率高達90%。整體而言,本研究所設計之回流反應系統已從以上各實驗中證實能明顯加速轉酯化反應,且反應可於10分鐘內完成。 然而,不論是傳統方法還是微波輔助方法,轉酯化反應中均勻相催化劑只能使用一次,因此本研究開發一種易於從反應物中分離出來且可再生利用之催化劑,並研究其特性。使用含浸法將MgO負載於顆粒狀SiO2擔體上,製備出MgO/SiO2(Q50),催化效果測試顯示出MgO負載於顆粒狀SiO2擔體的催化劑,其催化效果與粉末MgO催化效果差不多,且MgO溶出流失量明顯小於粉末MgO,重複使用5次的MgO/SiO2(Q50)催化劑經過乙醇清洗和回添1 Wt% MgO來補充反應過程中的溶出流失量後,其反應TG轉化率與新鮮催化劑無太大差異,但FAME選擇性會稍微下降。 綜合以上研究,不論是紫外光應用於山藥黏質液的殺菌,或是微波應用於生質柴油的生產,皆可看出電磁波於食品加工及化學轉酯化反應應用上不可忽視的潛力。紫外光殺菌可結合連續式泡沫分離系統,減少熱破壞活性物質,有利於開發保健產品;而微波加熱相較於傳統方法確實可縮短反應時間達到提升產能的效果。雖然後續催化劑開發目前只使用傳統方法測試其效能,但未來研究可繼續進行催化劑改良,並進行微波反應測試。
Electromagnetic waves are known to have many types and widely applied in food, chemical engineering, and other industries with advance technology. Ultraviolet and microwave are both electromagnetic waves. Compare with the traditional process methods, both ultraviolet and microwaves appear to show higher efficiency and effectiveness in food processing and chemical engineering industries. However, most evidence of ultraviolet and microwave radiations' effects are limited to lab-scaled application, and hence, further studies on investigating the feasibility of ultraviolet and microwave application on simulating the industrial scaled processing are necessary. In this study, investigation for sterilization of yam mucilage during the process of bubble separation is performed, while, on the other hand, the effect of microwave assisted transesterification in biodiesel production is also investigated. Meanwhile, development of rejuvenated catalyst for transesterification reaction is also an important objective for this study. In terms of ultraviolet sterilization, the objectives of this studies were to follow the previous design for continuously separating, recovering and irradiating yam slurry mucilage for inactivation of microorganisms. The results showed UV-C (245nm) irradiation (dosage of 32000μW /sec/cm2) was successfully applied to reduce the microbial load in the yam slurry mucilage after 200 sec irradiation, while resulting in zero cfu/ml APC & YM. E. coli and Salmonella are both negative. This novel continuous UV-C pilot-scale bubble separation technology could be an alternative technology not only separate and recover mucilage but also reduce the microorganisms to acceptable levels. The investigation of microwave-assisted transesterification at 9:1 methanol/oil molar ratio indicated that accumulation of by-product was the key factor of inhibiting the process of forward reaction. Meanwhile, methanol top-up in the subsequent reaction appeared to show positive effect to proceed forward reaction while allowing FAME yield to achieve 100%. The reaction time could be further reduced to 6 minutes with a FAME yield of 90% if the reaction was combined with glycerol separation process. The overall study showed that the reflux system for transesterification reaction designed in this study has been proved effective in improving the reaction rate, enabling the reaction completed within 10 minutes and showing high feasibility for industrial scale biodiesel production. However, the catalysts for both traditional and microwave method of transesterification can only be used once. Hence, an attempt has been made to develop a catalyst which is easy to separate from the products and rejuvenate after reaction. Pellet silica-supported MgO catalyst, MgO/SiO2(Q50) were prepared by impregnation method. Catalytic performance test results indicated that the activity of SiO2-supported MgO is comparable to that of MgO nano-particles, while the leaching rate is greatly reduced. Used catalysts after aging test were rejuvenated by ethanol washing and followed by adding 1 Wt% MgO to make-up the leached out MgO. By this rejuvenation method, TG conversion was recovered to the level comparable to that of the fresh catalysts, whereas FAME yield remained lower. Overall, regardless of applying ultraviolet on yam mucilage sterilization or microwave technique on biodiesel production, electromagnetic wave has showed high potential in food processing and chemical engineering application. Not only combining ultraviolet sterilization with the bubble separation system can largely reduce heat damage of the active components in the mucilage, showing good advantages on development of health products, but microwave heating has also indeed showed the effect of shortening the time of chemical reaction and increasing product yield as compared to the traditional methods of biodiesel production. Although, the study of rejuvenated catalyst development is currently concentrating on the effect of traditional reaction method, further research on the catalyzing effect improvement by using microwave heating technique can be organized in the future work.
URI: http://hdl.handle.net/11455/96044
文章公開時間: 2021-02-06
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.