Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96045
標題: Development of innovative food by integrating freeze drying and deposition technology
結合冷凍乾燥與沉積技術開發創新食品
作者: Ying-Zhi Lin
林穎芝
關鍵字: 豆腐
機能性物質
營養強化
沉積技術
冷凍乾燥
創新產品
Tofu
Functional substances
Nutrition fortification
Deposition technology
Freeze dry
Innovative food
引用: 1. 喬曉明, 豆腐製作技術. 農產品加工(上), 2013; 11: 35. 2. 康鑑文化編輯部, 吃對食物健康100分, 康鑑文化出版社, 2014. 3. Zhao, XY, et al., Functional, nutritional and flavor characteristic of soybean proteins obtained through reverse micelles. Food Hydrocolloids, 2018; 74: 358-366. 4. 食品藥物消費者知識服務網-食品營養成分分析資料庫(新版). Available from: https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178 5. Douglas C. Bauer, M.D., Calcium Supplements and Fracture Prevention. New England Journal of Medicine, 2013; 369: 1537-43. 6. Heaney, RP, et al., Absorbability and cost effectiveness in calcium supplementation. Journal of the American College of Nutrition, 2001; 20(3): 239-246. 7. Manchinasetty et.al., Influences of combined supplementation of calcium citrate and calcium carbonate on injectable and anti-washout hydroxyapatite/collagen bone paste utilizing sodium alginate. Journal of the Ceramic Society of Japan, 2017; 125(7): 579-583. 8. 國際橄欖油協會(International Olive Council). Available from: http://www.internationaloliveoil.org/ 9. Hohmann, C. D., et al., Effects of high phenolic olive oil on cardiovascular risk factors: A systematic review and meta-analysis. Phytomedicine, 2015; 22(6): 631-640. 10. García-Gavilán, J. F., et al., Extra virgin olive oil consumption reduces the risk of osteoporotic fractures in the PREDIMED trial. Clinical Nutrition, 2018; 37(1): 329-335. 11. Jody Gatewood, Vegetable Oils-Comparison, Cost, and Nutrition. Iowa State University, 2013. 12. 蔡英傑, 乳酸菌簡介. 台灣乳酸菌協會. 13. 蔡英傑, 乳酸菌與益生菌. 生物產業, 1998; 9(2): 17-21. 14. Vedamuthu, E. R. Starter cultures for yogurt and fermented milks. Manufacturing yogurt and fermented milks, 2006, 89-116. 15. 方繼, 李跟永 & 李清福, 現代食品微生物學. 偉銘圖書, 1999. 16. Maaike C. de Vries, et al., Lactobacillus plantarum—survival, functional and potential probiotic properties in the human intestinal tract. International Dairy Journal, 2006, 1018-1028. 17. Nagpal, R., et al., Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS microbiology letters, 2012; 334(1): 1-15. 18. Kailasapathy, K., & Chin, J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunology and cell Biology, 2000; 78(1): 80. 19. Yi-Ming Chen, et al., Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients, 2016; 8(4). 20. Kurmann, J.A., & Rasic, J.L. The health potential of products containing bifidobacteria. In' Therapeutic Properties of Fermented Milks ' (R.K. Robinson, ed.). Elsevier Applied Science, New York, 1991, 117-157. 21. 東原隼一, 神奇的乳酸菌. 桂冠, 1999. 22. 衛生福利部食品藥物管理署, 健康食品一覽表. Available from: https://consumer.fda.gov.tw/Food/InfoHealthFood.aspx?nodeID=162# 23. Baldwin, E. A., Hagenmaier, R. & Bai, J. Edible coatings and films to improve food quality, second edition. CRC Press, 2011. 24. Krochta, J. M., Baldwin, E. A. & Nisperos-Carriedo M. O. Edible coatings and films to improve food quality. Basel, 1994; 25: Technomic Publishing Co. Inc. 25. Kester, J. J., & Fennema, O. R. Edible films and coatings: a review. Food Technology,1986; 40: 47-59. 26. Debeaufort, F. et al. Edible films and coatings: tomorrow's packagings: a review. Critical Reviews in Food Science and Nutrition, 1988; 38: 299-313. 27. Bourtoom, T. Edible films and coatings: characteristics and properties. International Food Research Journal, 2008; 15: 237-248. 28. W. B. Russel, D. A. Saville, W. R. Schowalter, Colloidal Dispersions, Cambridge University Press, 1989. 29. M. Elimelech, J. Gregory, X. Jia, R. A. Williams. Particle Deposition and Aggregation Measurement: Modelling and Simulation. Boston, 1995. 30. Marcel R.Böhmer et al. Kinetics of Particle Adsorption in Stagnation Point Flow Studied by Optical Reflectometry. Journal of Colloid and Interface Science, 1998; 197(2): 242-250. 31. 劉運生, 真空冷凍乾燥技術簡介. 冷藏技術, 1996; 4: 26-29. 32. 徐崇榮, 何佳靜等, 冷凍真空乾燥. 科學發展期刊, 2015; 75: 70-75. 33. 丁正斌等, 冷凍乾燥工藝簡介. 真空與低溫, 1996; 2(1): 52-57. 34. 黃艷娜等, 乾製凍豆腐工藝研究及品質分析. 2017; (3): 33-36. 35. Capretto, L., et al. Production of polymeric micelles by microfluidic technology for combined drug delivery: application to osteogenic differentiation of human periodontal ligament mesenchymal stem cells (hPDLSCs). International Journal of Pharmaceutics, 2013; 440(2): 195-206. 36. 王德雄, 利用微流體系統製備包埋蝦紅素油心之褐藻膠微膠囊. 國立中興大學, 2012. 37. 王楠, 海藻酸鈉/多孔澱粉牛至精油微膠囊的製備. 食品工業科技, 2015; 37(9): 224-234. 38. 生合生物科技 Available from: https://www.synbiotech.com/ 39. 楊登傑等, 新編食品分析與檢驗(二版). 華格納, 2015. 40. 郭利萍, 周小剛, 國際食品中鈣含量滴定測定方法的優化. 食品工業, 2012; 33(5): 130-131. 41. 經濟部標準檢驗局, 食品微生物之檢驗法- 乳酸菌之檢驗, in中華民國國家標準 CNS14760. 42. 經濟部標準檢驗局, 食品微生物之檢驗法- 生菌數之檢驗, in中華民國國家標準 CNS10890. 43. 經濟部標準檢驗局, 食品微生物之檢驗法- 大腸桿菌之檢驗, in中華民國國家標準 CNS10951. 44. 顏國欽等, 食品化學. 華格納, 2007. 45. 施明智, 食物學原理(第三版). 藝軒, 2010. 46. Gregor Trefalt, Michal Borkovec. Overview of DLVO Theory. Laboratory of Colloid and Surface Chemistry, University of Geneva, 2014. 47. 方亮, 藥劑學(第三版). 中國醫藥科技出版社, 2016.
摘要: 外食主義及精緻飲食改變了民眾攝取食物的型態,高油及高醣的特性雖然能量充足但易營養不均衡,衍生許多文明病。本研究以具多孔特性的調味凍豆腐作為基材,反覆進行浸漬沉積與冷凍乾燥操作,於基材上添加機能性物質,使其成為營養強化的食物。研究中以檸檬酸鈣、橄欖油、乳酸菌做為營養強化素材,並將油性材料包覆於褐藻酸鈣的微膠囊中以利沉積與保護。浸漬用溶液的素材濃度控制在0.3 %至0.5 % 之間,且沉積吸附時間控制在10至15分鐘之間有最佳的沉積吸附效益。建議的浸漬沉積順序為檸檬酸鈣、橄欖油、乳酸菌。最終製成類似餅乾的塊狀營養強化食品,每顆約2.5克可以裝載40毫克的鈣、0.5克油脂及6.8✕10^8 CFU的乳酸菌。因使用高蛋白的豆腐為基材,產品的含醣量僅為類似的市售產品的20%且鈣質含量約高3倍以上。結果說明此加工模式的可行性,未來可延伸針對客戶的營養需求進行成分替換,添加維生素、礦物質、機能性脂質以成就個人化的高密度營養強化食品。
Eat-out and gourmet food modify people's diet preference. The calorie of these food is enough for people due to the food contains abundant of carbohydrate and fat. However, it's lack of nutrients and may make people fall ill. The basic material of the study is flavored frozen tofu. It has a positive characteristic of porosity. Integrating freeze dry and deposition technology to add functional substances into raw food, making the food more nutritional. Calcium citrate, olive oil and Lactobacillus plantarum TWK10 (LP10) are functional substances in the study. Moreover, gelation of alginate and encapsulated oil droplets may benefit to deposition and protection. The optimized condition of deposition are as following: solvent concentration controlled within 0.3 to 0.5% and deposited duration controlled within 10 to 15 minutes. The ideal deposited order are calcium citrate, olive oil and the last is LP10. The product is like as commercial cracker but more nutritional. A cracker is 2.5 g per piece, containing calcium 40 mg, lipid 0.5 g and LP10 6.8✕10^8 CFU. Because using protein as basement, the carbohydrate content achieves a reduction of 30% and the calcium content is three times more than commercial products. The results highly support the food model. People can choose nutrients for themselves according to they need. It's customized. The products are expected to be praised by consumers and making them reach the goal of dietary reference intakes.
URI: http://hdl.handle.net/11455/96045
文章公開時間: 2018-07-24
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.