Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96050
標題: Development of a slow release vitamin B-enriched food supplement
維生素B緩釋錠狀食品之開發
作者: Chiu-Pei Li
李秋佩
關鍵字: 維生素B
緩釋錠
vitamin B
slow release tablet
引用: 王雅玲、陳啟佑。口服特殊劑型介紹。大同藥訊第一卷第一期。2010。 陳長安。常用藥物治療手冊(38)。全國藥品出版社。2007。P1521-1532。 劉正雄。口服間質性控釋錠片之研發。台北醫學院藥學研究所博士論文。1992。p8-11。 劉正雄。固體口服改良釋放劑型與遞藥系統:錠劑。九洲圖書文物有限公司。第八版。2006。P228-256。P260-275。 簡銘?。【用藥安全】口服藥品百百種正確服用藥劑(記)得。振興醫訊第237期。2016。P13-P15。 衛生福利部。食品中水溶性維生素之檢驗方法。2013。(https://www.fda.gov.tw/upload/133/Content/2013091008431146827.pdf) The United States Pharmacopeial Convention: The United States pharmacopoeia-national formulary. USP 35th–NF 30st ed. Rockville: The United States Pharmacopeial Convention, 2011, 801-802, 867-868, 978-979. Abraham, D. J. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. Journal of Controlled Release. 2006; 114 (1), 1-14. Adebayo, A. S., Itiola, O.A. Effects of breadfruit and cocoyam starch mucilage binders on disintegration and dissolution behaviours of paracetamol tablet formulations. Pharmaceutical Technology. 2003; 3, 78-88. Adebayo, A. S., Itiola, O.A., Properties of starches obtained from Colocasiaesculenta and Artocarpuscommunis. Nigerian Journal of Natural Products and Medicine.1998; 2; 29-33. Adebayo, A.S., A Study of Breadfruit and Cocoyam Starches as Excipients in Paracetamol Tablet Formulations, Ph.D. Thesis, University of Ibadan, Nigeria, 2001. Ahlneck, C., Alderborn G. Moisture adsorption and tabletting. I. Effect on volume reduction properties and tablet strength for some crystalline materials. International Journal of Pharmaceutics. 1989; 54, 131-141. Albhar, G. K., Wagh, S. V., Chavan, B. B. Effect of HPMC K4M, HPMC K15M, sodium alginate and carbopol 934 in the formulation of carbonyl iron capsule. Der Pharmacia Lettre.2012; 4, 94-367. Alderborn, G., Duberg, M. Nystrom, C. Studies on directcompression of tablets. X. Measurement of tablets area bypermeametry. Powder Technology. 1985; 41, 49-56. Armstrong, N. A., Direct compression characteristics of granulated Lactitol. Pharmaceutical Technology Europe. 1997; 9, 24-30. Azevedo, M. A., Bourbon, A. I., Vicente, A. A., Cerqueira, M. A., Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. International Journal of Biological Macromolecules. 2014; 71, 141-146. Chen, S. C., Wu, Y. C., Mi, F. L., Lin, Y. H., Yu, L. C., Sung, H. W. A novel pH sensitivehydrogel composed of N, O-carboxymethyl chitosan andalginate cross-linked by genipin for protein drug delivery. Journal of Controlled Release. 2004; 96, 285-300. Colombo, P., Bettini, R., Peppas, N.A., Observation of swelling process and diffusion front position during swelling in hydroxypropyl methyl cellulose (HPMC) matricescontaining a soluble drug. Journal of Controlled Release. 1999; 61, 83-91. Colombo, P., Bettini, R., Santi, P., Peppas, N. A., Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharmaceutical Science & Technology Today 2000; 3, 198-204. Espevik, T., Otterlei, M., Skjak-Bræk, G., Ryan, L., Wright, S. D., Sundan, A., The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. European Journal of Immunology. 1993, 23, 255 -261 Ball, G.F.M. Vitamins their Role in the Human Body, first ed., Blackwell Publishing Ltd., London, UK, 2008. Gao, P., Skoug, J. W., Nixon, P. R., Robert Ju, T., Stemm, N. L., Sung, K. C., Swelling of hydroxypropyl methylcellulose matrix tablets. 2. Mechanistic study of the influence offormulation variables on matrix performance and drug release. Journal of Pharmaceutical Sciences.1996; 85, 732-740. Grassi, M., Grassi, G. Application of mathematical modeling in sustained release delivery systems. Expert Opinion on Drug Delivery, 2014; 11, 1299-1321. Grassi, M.; Grassi, G.; Lapasin, R.; Colombo, I. Drug Dissolution and Partitioning. In Understanding Drug Release and Absorption Mechanisms, a Physical and Mathematical Approach; CRC Press: Boca Raton. 2007; 249-327. Gupta, S., Goswami, A., Sadhukhan, A. K., Mathur, D. N., Comparative study of lactate removal in short massage of extremities, active recovery and a passive recovery period after supramaximal exercise sessions.International Journal of Sports Medicine.1996; 17(2), 106-110. Hersey, J. A., Rees, J. E. and Cole, E. T, Density changes inlactose tablets. Journal of Pharmaceutical Sciences, 1973; 62, 2060. Huttenrauch, R. The mechanism of tablet forming – A new conception. Proc. 1st Int. Conf. Pharm. Technol. APGI, Paris, IV, 1977; 114-120. Jiasheng, T., Shen, Y., Ravichandran, M., Bhaskara, J., Xiaoling, L., Polymers in oral modified release systems, in: Wen, H., Park, K. (Eds.), Oral Controlled Release FormulationDesign and Drug Delivery: Theory to Practice. John Wiley & Sons. 2010. Khamanga, S. M., Walker, R. B., Evaluation of rate of swelling and erosion of verapamil (VRP) sustained-release matrix tablets. Drug Development and Industrial Pharmacy. 2006; 32, 1139-1148. Kumar, V., Prajapati, S. K., Soni, G. C., Singh, M., Kumar, N. Sustained release matrix type drug delivery system: a review. World Journal of Pharmacy and Pharmaceutical Sciences, 2012; 1(3), 934-960. Li, C. L., Martini, L. G., Ford, J. L., Roberts, M., The use of hypromellose in oral drug delivery. Journal of Pharmacy and Pharmacology. 2005; 57, 533-546. Lordi, N., Shiromani, P.Use of sorption isotherms to study the effect of moisture on the hardness of aged compacts.Drug Development and Industrial Pharmacy. 1983; 9, 1399-1416. Maderuelo, C., Zarzuelo, A., Lanao, J. M., Critical factors in the release of drugs from sustained release hydrophilic matrices. Journal of Controlled Release. 2011; 154, 2-19. Maderuelo, C., Zarzuelo, A., Lanao, J. M. Critical factors in the release of drugsfrom sustained release hydrophilic matrices. Journal of Controlled Release. 2011; 154, 2-19. Bruschi, M. L. Strategies to Modify the Drug Release from Pharmaceutical Systems; Elsevier: Amsterdam, The Netherlands, 2015. McKenna, A., McCafferty, D. F. Effect of particle size onthe compaction mechanism and tensile strength of tablets. Journal of Pharmaceutical Sciences, 1982; 34, 347-351. Mitchell, K., Ford, J. L., Armstrong, D. J., Elliott, P. N. C., Rostron, C., Hogan, J. E., The influence of concentration on the release of drugs from gels and matrices containing Methocel®. International Journal of Pharmaceutics. 1993; 100, 155-163. Mohd, A. H., Raghavendra, R. N. G., Sunil, F. Mini-tablets technology: An Overview. American Journal of PharmTech Research. 2012; 2(2), 128-150. Phadtare, D., Ganesh Phadtare, N. B., Asawat, M. Hypromellose – a choice ofpolymer in extended release tablet formulation. World Journal of Pharmaceutical Sciences. 2014; 3, 551-566. Rowe, R. C., Sheskey, P. J., Weller P. J. Pharmaceutical Handbook of Pharmaceutical Excipients, 5th edn., Pharmaceutical, London UK and American Pharmaceutical Association, Washington, USA, 2004, P343-347, P623-626. Reza, M. S., Quadir, M. A., Haider, S. S., Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery.Journal of Pharmacy and Pharmaceutical Sciences. 2003; 6, 282-291. Rubinstein, M.H., Tablets. In Pharmaceutics: the Science of Dosage Form Design (Aulton, M.E., ed.), Churchill Livingstone, New York, USA, 1988; 304-321. Sarika, P., Ashutosh, B., Deepak, S., Sustained release matrix technology and recent advance in matrix drug delivery system: a review. International Journal of Drug Research and Technology, 2013; 3(1), 12-20. Stoltenberg, I., Breitkreutz, J., Orally disintegrating mini-tablets (ODMTs)—a novel solid oral dosage form for paediatric use. European Journal of Pharmaceutics and Biopharmaceutics. 2011; 78, 462–469. Stoltenberg, I., Winzenburg, G., Breitkreutz, J., Solid oral dosage forms for children—formulations, excipients and acceptance issues.European Journal of Pharmaceutics and Biopharmaceutics.2011; 8, 4–7, February (8). Sung, K., Nixon, P. R., Skoug, J. W., Ju, T. R., Gao, P., Topp, E., Patel, M., Effect of formulation variables on drug and polymer release from HPMC-based matrix tablets. International Journal of Pharmaceutics. 1996; 142, 53-60. Tahara, K., Yamamoto, K., Nishihata, T., Overall mechanism behind matrixsustained release (SR) tablets prepared with hydroxypropyl methylcellulose 2910.Journal of Controlled Release. 1995; 35, 59-66. Thapa, P., Lee, A. R., Choi, D. H., Jeon, S. H. Effects of moisture content and compression pressure of various deforming granules on the physical properties of tablets , Powder Technology, 2017; 310, 92-102. Wan, L. S. C., Heng, P. W. S., Wongh, L. F., The effect of hydroxypropyl methylcelluloseon water penetration into a matrix system. International Journal of Pharmaceutics. 1991; 73, 111-116. Zoopi ,C. C., Hohl, R., Silva, F. C., Lazarim, F. L., AntunesNeto, J. M. F., Stancanneli, M., Macedo, D. V. Vitamin C and E supplementation effects in professional soccer players under regular training. Journal of the International Society of Sports Nutrition. 2006; 3(2), 37-44. Zuleger, S., Lippold, B. C. Polymer particle erosion controlling drug release. I. Factors influencing drug release and characterization of the release mechanism. International Journal of Pharmaceutics. 2001; 217, 139-152.
摘要: 本實驗擬將一般錠劑的維生素B群保健食品,開發成可緩釋的保健食品,目的使B群活性成分於體內緩慢釋出,可持續補充維生素B群。實驗設計為使用羥丙基甲基纖維素(hydroxypropyl methyl cellulose , HPMC 2208)及海藻酸鈉(包括:MANUCOL® LKX、PROTANAL® 8233和KIMICA ALGIN),設計8個緩釋錠配方進行試製並建立緩釋錠關鍵製程管制點,確認直打法可適用於本研究B群緩釋錠的開發。在素錠的溶離速率的實驗中發現海藻酸鈉系列緩釋劑可當作本實驗之緩釋劑,且以添加海藻酸鈉(KIMICA ALGIN 15%)之配方,較符合實驗設計緩釋之效果。接著,利用光照試驗及50 ± 2°C / 75 ± 5% RH加速虐待試驗後,確認膜衣增重4%為最佳配方,確認未來市售應以塑膠瓶為最佳包材,鋁箔袋次之,較能確保產品品質。成品經加速安性試驗3個月,檢驗主成分維生素B1、維生素B2及維生素B6,含量皆符合規格標準,於80%至120%之合格範圍內,顯示此配方其品質安定性穩定。
This study was to develop a slow release vitamin B complex table. The purpose was to make the vitamin B complex slowly releasing in our body to give a better absorption vitamins, hydroxypropyl methyl cellulose (HPMC 2208) and sodium alginate (including MANUCOL® LKX, PROTANAL® 8233, and KIMICA ALGIN) were used and eight slow release formulas of B complex tablets for trial production were designed in this study. After the trial production, some key process control points of the targeted slow release tablet production were established. It was confirmed that the direct compression method could be applied in the development of B complex slow release tablets. By comparing the dissolution rate of an uncoated tablet, it was found that sodium alginate could be used as a slow release agent. The formulation with 15% of sodium alginate (KIMICA ALGIN) gave a better slow release performance. After the photostability and stress studies (50°C ±2°C / 75% RH ± 5% RH), the formula with is 4% in the film weight gain was suggested for the film-coated tablet. The best option was of packaging materials in the commercial product was plastic bottle and the second was aluminum bags to ensure the product quality. After a three months of accelerated stability study, the contents of activity ingredients including vitamin B1, B2, and B6, in the finished product were all between 80% and 120% and met the specifications. The results showed that the formula was stable in terms of quality and could be used for scale-up production.
URI: http://hdl.handle.net/11455/96050
文章公開時間: 10000-01-01
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.