Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96066
標題: Application of ultrasonic treatment in the fermentation of okara with Lactobacillus plantarum
超音波處理應用於Lactobacillus plantarum發酵豆渣之研究
作者: Hui-Tzu Peng
彭惠資
關鍵字: Lactobacillus plantarum BCRC 10357
豆渣
超音波
β-葡萄糖苷酶
異黃酮
Lactobacillus plantarum BCRC 10357
okara
ultrasound
β-glucosidase
isoflavones
引用: 王宜婕。(2004)。乳酸菌與雙叉桿菌發酵豆奶及其產品之抗氧化活性 (博士論文)。國立台灣大學。台灣,台北市。 方繼、李根永、李清福、林建谷、陳惠英、林順富、虞積凱、范晉嘉、蔡國珍譯。(1999)。現代食品微生物學。偉明圖書。台灣,台北市。 江文德。(1998)。簡介大豆中的異黃酮素。食品工業。30(9): 6-12。台灣,新竹市。 江伯源、張心怡、陳鴻洲、張正錩。(2003)。黃豆製品加工技術面面觀(一)。農業世界雜誌。242: 88-96。台灣,台中市。 行政院農業委員會農糧署:農業統計年報。(2015)。 李詠梅、厲曙光。(2002)。大豆異黃酮抗癌作用的研究發展。同濟大學學報。23: 351-353。中國,上海市。 李福臨。(2000)。乳酸菌分類之研究近況。食品工業。32(8): 36-42。台灣,新竹市。 岡田早苗。(2008)。亞洲傳統發酵食品中植物性乳酸菌之新應用。植物性乳酸菌研討會。台灣,台北市。 紀志勳。(2007)。利用乳酸菌發酵提升脫脂大豆粕中去糖苷異黃酮含量之研究 (碩士論文)。國立嘉義大學。台灣,嘉義市。 袁敏芝。(2015)。超音波處理對米糠萃取物理化特性之影響 (碩士論文)。輔仁大學。台灣,新北市。 陳世爵。(1997)。防癌及抗疾病的一大福音-異黃酮素。健康世界。8: 111-112。台灣,台北市。 陳怡德。(2006a)。不同擠壓加工對組織化植物蛋白理化性質之研究 (碩士論文)。國立屏東科技大學。台灣,屏東縣。 陳俞伶。(2004)。發酵豆乳中活性胜肽之生產 (碩士論文)。國立臺灣海洋大學。台灣,基隆市。 陳暐楨。(2006b)。豆渣堆肥過程中化學及微生物相變化 (碩士論文)。國立高雄第一科技大學。台灣,高雄市。 陳慶源、黃崇真、邱雪惠、廖啟成。(2007)。乳酸菌之保健功效與產品開發。農業生技產業季刊。11: 60-68。台灣,台北市。 曾浩洋。(2008)。植物來源功能性乳酸菌之篩選及應用。植物性乳酸菌研討會。台灣,台北市。 黃祥凱。(2004a)。乳酸菌發酵糙薏仁優格之產製技術及生理活性探討 (碩士論文)。國立臺灣海洋大學。台灣,基隆市。 黃崇真。(2004b)。腸道微生物及益生菌。食品工業。36: 4-15。台灣,新竹市。 黃惠宇。(2006)。腸道守護神-乳酸菌。科學月刊。37(2): 104-107。台灣,台北市。 張雅琳。(2008)。初步探討黃白木耳發酵豆奶之機能性與保健產品開發 (碩士論文)。國立中興大學。台灣,台中市。 楊政遠。(2015)。藉由不同乳酸菌發酵提升黑豆清之血管收縮素轉化酶抑制活性及抗氧化活性 (碩士論文)。國立嘉義大學。台灣,嘉義市。 詹淑雲。(2001)。乳酸菌生產胞外黏性物質及鰺魚與鰮魚肉漿乳酸菌發酵食品之探討 (碩士論文)。國立臺灣海洋大學。台灣,基隆市。 經濟部標準檢驗局。食品中水分之檢驗方法。CNS 5033 N6114。台灣,台北市。 經濟部標準檢驗局。食品中灰分之檢驗方法。CNS 5034 N6115。台灣,台北市。 經濟部標準檢驗局。食品中粗脂肪之檢驗方法。CNS 5036 N6117。台灣,台北市。 經濟部標準檢驗局。食品中粗蛋白質之檢驗方法。CNS 5035 N6116。台灣,台北市。 經濟部標準檢驗局。食品檢驗法-粗纖維含量之測定。CNS 5037 N6118。台灣,台北市。 廖啟成。(1998)。乳酸菌之分類與應用。食品工業。30: 1-10。台灣,新竹市。 衛生福利部食品藥物管理署。台灣地區食品營養成分資料庫。(2016)。 蔡惠玲。(2011)。微化豆渣機能特性及高纖麵條製備技術之研究 (碩士論文)。國立中興大學。台灣,台中市。 戴蔭芳、劉成軍、張超良、曹慶榮、李保真。(1995)。藥用蔬菜。渡假出版社。台灣,新北市。 顏聰榮。(2008)。台灣乳酸菌及發酵乳製品產業的最新發展。化工。55(4): 69-76。 Ammor, S., Tauveron, G., Dufour, E., & Chevallier, I. (2006). Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility. Food Control, 17(6), 454-461. Amrouche, T., Boutin, Y., Prioult, G., & Fliss, I. (2006). Effects of bifidobacterial cytoplasm, cell wall and exopolysaccharide on mouse lymphocyte proliferation and cytokine production. International Dairy Journal, 16(1), 70-80. Anderson, J. W., Smith, B. M., & Washnock, C. S. (1999). Cardiovascular and renal benefits of dry bean and soybean intake. The American Journal of Clinical Nutrition, 70(3), 464S-474S. Anderson, R. L., & Wolf, W. J. (1995). Compositional changes in trypsin inhibitors, phytic acid, sa. The Journal of Nutrition, 125(3), S581. Anthony, M. S., Clarkson, T. B., & Williams, J. K. (1998). Effects of soy isoflavones on atherosclerosis: potential mechanisms. The American Journal of Clinical Nutrition, 68(6), 1390S-1393S. Arjmandi, B. H., Getlinger, M. J., Goyal, N. V., Alekel, L., Hasler, C. M., Juma, S., Drum, M. L., Hollis, B. W., & Kukreja, S. C. (1998). Role of soy protein with normal or reduced isoflavone content in reversing bone loss induced by ovarian hormone deficiency in rats. The American Journal of Clinical Nutrition, 68(6), 1358S-1363S. Arora, A., Nair, M. G., & Strasburg, G. M. (1998). Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Archives of Biochemistry and Biophysics, 356(2), 133-141. Aruoma, O. I. (1998). Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American Oil Chemists' Society, 75(2), 199-212. Ashraf, R., Vasiljevic, T., Day, S. L., Smith, S. C., & Donkor, O. N. (2014). Lactic acid bacteria and probiotic organisms induce different cytokine profile and regulatory T cells mechanisms. Journal of Functional Foods, 6, 395-409. Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., & Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: a review. Food Research International, 48(2), 410-427. Axelsson, L., & Ahrné, S. (2000). Lactic acid bacteria. Applied Microbial Systematics (pp. 367-388). Springer Science and Business Media. Barnes, S. (1995). Effect of genistein on in vitro and in vivo models of cancer. The Journal of Nutrition, 125(3), 777S-783S. Bendicho, C., & Lavilla, I. (2000). Ultrasound extractions. Encyclopedia of Separation Science. Academic Press, London, 1448-1454. Bourne, M., Clemente, M. G., & Banzon, J. (1976). Survey of suitability of thirty cultivars of soybeans for soymilk manufacture. Journal of Food Science, 41(5), 1204-1208. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30. Brown, J. P. (1988). Hydrolysis of glycosides and esters. Role of the gut flora in toxicity and cancer, 109-144. Burke, V., Hodgson, J. M., Beilin, L. J., Giangiulioi, N., Rogers, P., & Puddey, I. B. (2001). Dietary protein and soluble fiber reduce ambulatory blood pressure in treated hypertensives. Hypertension, 38(4), 821-826. Chen, H. M., Muramoto, K., & Yamauchi, F. (1995). Structural analysis of antioxidative peptides from soybean β-conglycinin. Journal of Agricultural and Food Chemistry, 43(3), 574-578. Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K., & Nokihara, K. (1998). Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agricultural and Food Chemistry, 46(1), 49-53. Chiou, R. Y. Y., & Cheng, S. L. (2001). Isoflavone transformation during soybean koji preparation and subsequent miso fermentation supplemented with ethanol and NaCl. Journal of Agricultural and Food Chemistry, 49(8), 3656-3660. Chiu, C. H., Lu, T. Y., Tseng, Y. Y., & Pan, T. M. (2006). The effects of Lactobacillus-fermented milk on lipid metabolism in hamsters fed on high-cholesterol diet. Applied Microbiology and Biotechnology, 71(2), 238-245. Chumchuere, S., & Robinson, R.K. (1999). Selection of starter cultures for the fermentation of soya milk. Food Microbiology, 16(2), 129-137. Clarkson, T. B., Anthony, M. S., & Hughes, C. L. (1995). Estrogenic soybean isoflavones and chronic disease: risks and benefits. Trends in Endocrinology & Metabolism, 6(1), 11-16. Clarkson, T. B., Anthony, M. S., & Morgan, T. M. (2001). Inhibition of postmenopausal atherosclerosis progression: a comparison of the effects of conjugated equine estrogens and soy phytoestrogens. The Journal of Clinical Endocrinology & Metabolism, 86(1), 41-47. Cohen, L. A., Zhao, Z., Pittman, B. S. J. A., & Scimeca, J. A. (2000). Effect of intact and isoflavone-depleted soy protein on NMU-induced rat mammary tumorigenesis. Carcinogenesis, 21(5), 929-935. Coward, L., Barnes, N. C., Setchell, K. D. R., & Barnes, S. (1993). Genistein, daidzein, and their β-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. Journal of Agricultural and Food Chemistry, 41(11), 1961-1967. Coward, L., Smith, M., Kirk, M., & Barnes, S. (1998). Chemical modification of isoflavones in soyfoods during cooking and processing. The American Journal of Clinical Nutrition, 68(6), 1486S-1491S. Day, A. J., DuPont, M. S., Ridley, S., Rhodes, M., Rhodes, M. J. C., Morgan, M. R.A., & Williamson, G. (1998). Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β‐glucosidase activity. Federation of European Biochemical Societies, 436(1), 71-75. Decker, E. A. (1995). The role of phenolics, conjugated linoleic acid, carnosine, and pyrroloquinoline quinone as nonessential dietary antioxidants. Nutrition Reviews, 53(3), 49-58. Delalande, A., Kotopoulis, S., Rovers, T., Pichon, C., & Postema, M. (2011). Sonoporation at a low mechanical index. Ultrasound in Medicine & Biology, 3(1), 3-11. Delalande, A., Kotopoulis, S., Postema, M., Midoux, P., & Pichon, C. (2013). Sonoporation: mechanistic insights and ongoing challenges for gene transfer. Gene, 525(2), 191-199. Demirdöven, A., & Baysal, T. (2009). The use of ultrasound and combined technologies in food preservation. Food Reviews International, 25(1), 1-11. Denter, J., & Bisping, B. (1994). Formation of B-vitamins by bacteria during the soaking process of soybeans for tempe fermentation. International Journal of Food Microbiology, 22(1), 23-31. Desiere, F., Lucchini, S., Canchaya, C., Ventura, M., & Brüssow, H. (2002). Comparative genomics of phages and prophages in lactic acid bacteria. Antonie van Leeuwenhoek, 82(1), 73-91. Donkor, O. N., & Shah, N. P. (2008). Production of β-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. Journal of Food Science, 73(1), M15-M20. Dunne, C., Murphy, L., Flynn, S., O'Mahony, L., O'Halloran, S., Feeney, M., Morrissey, D., Thornton, G., Fitzgerald, G., Daly, C., Kiely, B., Quigley, E. M. M., O'Sullivan, G. C., Shanahan, F.,& Collins, J.K. (1999). Antonie van Leeuwenhoek, 76, 279-292. Erdman, J. W. (2000). Soy protein and cardiovascular disease: a statement for healthcare professionals from the nutrition committee of the AHA (American Heart Association). Circulation, 2555-2559. Esaki, H., Watanabe, R., Onozaki, H., Kawakishi, S., & Osawa, T. (1999). Formation mechanism for potent antioxidative o-dihydroxyisoflavones in soybeans fermented with Aspergillus saitoi. Bioscience, Biotechnology, and Biochemistry, 63(5), 851-858. Ewe, J. A., Wan Abdullah, W. N., Bhat, R., Karim, A. A., & Liong, M. T. (2012). Enhanced growth of lactobacilli and bioconversion of isoflavones in biotin-supplemented soymilk upon ultrasound-treatment. Ultrasonics Sonochemistry, 19(1), 160-173. Fernandes, C. F., Shahani, K. M., & Amer, M. A. (1987). Therapeutic role of dietary lactobacilli and lactobacillic fermented dairy products. Federation of European Microbiological Societies Microbiology Reviews, 46(3), 343-356. Flo, T. H., Smith, K. D., Sato, S., Rodriguez, D. J., Holmes, M. A., Strong, R. K., Akira, S.,& Aderem, A. (2004). Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature, 432(7019), 917-921. Foti, P., Erba, D., Riso, P., Spadafranca, A., Criscuoli, F., & Testolin, G. (2005). Comparison between daidzein and genistein antioxidant activity in primary and cancer lymphocytes. Archives of Biochemistry and Biophysics, 433(2), 421-427. Fournier, D. B., Erdman, J. W., & Gordon, G. B. (1998). Soy, its components, and cancer prevention: a review of the in vitro, animal, and human data. Cancer Epidemiology and Prevention Biomarkers, 7(11), 1055-1065. Fritz, K. L., Seppanen, C. M., Kurzer, M. S., & Saari Csallany, A. (2003). The in vivo antioxidant activity of soybean isoflavones in human subjects. Nutrition Research, 23(4), 479-487. Fukutake, M., Takahashi, M., Ishida, K., Kawamura, H., Sugimura, T., & Wakabayashi, K. (1996). Quantification of genistein and genistin in soybeans and soybean products. Food and Chemical Toxicology, 34(5), 457-461. Gordon, M. H. (1990). The mechanism of antioxidant action in vitro. Food Antioxidants (pp. 1-18). Springer Science and Business Media. Hawksworth, G., Drasar, B. S., & Hill, M. J. (1971). Intestinal bacteria and the hydrolysis of glycosidic bonds. Journal of Medical Microbiology, 4(4), 451-459. Hirayama, K., & Rafter, J. (2000). The role of probiotic bacteria in cancer prevention. Microbes and Infection, 2(6), 681-686. Hofvendahl, K., & Hahn–Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 26(2), 87-107. Holzapfel, W. H., Haberer, P., Snel, J., Schillinger, U., & in't Veld, J. H. J. H. (1998). Overview of gut flora and probiotics. International Journal of Food Microbiology, 41(2), 85-101. Hou, J. W., Yu, R. C., & Chou, C. C. (2000). Changes in some components of soymilk during fermentation with bifidobacteria. Food Research International, 33(5), 393-397. Hsieh, C., Hsu, T. H., & Yang, F. C. (2005). Production of polysaccharides of Ganoderma lucidum (CCRC 36021) by reusing thin stillage. Process Biochemistry, 40(2), 909-916. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856. Ishida, T., Koba, K., Sugano, M., Imaizumi, K., Watanabe, S., & Minoshima, R. (1988). Cholesterol levels and eicosanoid production in rats fed phosphatidylinositol or soybean lecithin. Journal of Nutritional Science and Vitaminology, 34(2), 237-244. Iwata, T., Hoshi, S., Takehisa, F., Tsutsumi, K., Furukawa, Y., & Kimura, S. (1992). The effect of dietary safflower phospholipid and soybean phospholipid on plasma and liver lipids in rats fed a hypercholesterolemic diet. Journal of Nutritional Science and Vitaminology, 38(5), 471-479. Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., Kataoka, S., Kubota, Y., & Kikuchi, M. (2000). Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. The Journal of nutrition, 130(7), 1695-1699. Jackson, C. J. C., Dini, J. P., Lavandier, C., Rupasinghe, H. P. V., Faulkner, H., Poysa, V., Buzzell, D., & DeGrandis, S. (2002). Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu. Process Biochemistry, 37(10), 1117-1123. Jayasekera, S., Molan, A. L., Garg, M., & Moughan, P. J. (2011). Variation in antioxidant potential and total polyphenol content of fresh and fully-fermented Sri Lankan tea. Food Chemistry, 125(2), 536-541. Jiménez-Escrig, A., Tenorio, M. D., Espinosa-Martos, I., & Rupérez, P. (2008). Health-promoting effects of a dietary fiber concentrate from the soybean byproduct okara in rats. Journal of Agricultural and Food Chemistry, 56(16), 7495-7501. Jin, L. Z., Ho, Y. W., Abdullah, N., & Jalaludin, S. (1998). Growth performance, intestinal microbial populations, and serum cholesterol of broilers fed diets containing Lactobacillus cultures. Poultry Science, 77(9), 1259-1265. Kamaly, K. M. (1997). Bifidobacteria fermentation of soybean milk. Food Research International, 30(9), 675-682. Kao, F. J., Su, N. W., & Lee, M. H. (2003). Effect of calcium sulfate concentration in soymilk on the microstructure of firm tofu and the protein constitutions in tofu whey. Journal of Agricultural and Food Chemistry, 51(21), 6211-6216. Khare, S. K., Jha, K., & Gandhi, A. P. (1995). Citric acid production from okara (soy-residue) by solid-state fermentation. Bioresource Technology, 54(3), 323-325. Kim, J. J., Kim, S. H., Hahn, S. J., & Chung, I. M. (2005). Changing soybean isoflavone composition and concentrations under two different storage conditions over three years. Food Research International, 38(4), 435-444. Korhonen, H. (2009). Milk-derived bioactive peptides: from science to applications. Journal of Functional Foods, 1(2), 177-187. Kronenberg, H. J., & Hang, Y. D. (1984). Biochemical changes in okara during meitauza fermentation. Nutrition Reports International, 30(2), 439-443. Lee, C.H., Yang, L., Xu, J. Z., Yeung, S. Y. V., Huang, Y., & Chen, Z. Y. (2005). Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chemistry, 90(4), 735-741. Lentacker, I., De Cock, I., Deckers, R., De Smedt, S. C., & Moonen, C. T. W. (2014). Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Advanced Drug Delivery Reviews, 72, 49-64. Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15(2), 67-78. Lewis, P. T., Wähälä, K., Hoikkala, A., Mutikainen, I., Meng, Q. H., Adlercreutz, H.,& Tikkanen, M. J. (2000). Synthesis of antioxidant isoflavone fatty acid esters. Tetrahedron, 56(39), 7805-7810. Lijun, Y., Lite, L., Zaigui, L., Tatsumi, E., & Saito, M. (2004). Changes in isoflavone contents and composition of sufu (fermented tofu) during manufacturing. Food Chemistry, 87(4), 587-592. Lin, W. H., Hwang, C. F., Chen, L. W., & Tsen, H. Y. (2006). Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiology, 23(1), 74-81. Lin, Y., Meijer, G. W., Vermeer, M. A., & Trautwein, E. A. (2004). Soy protein enhances the cholesterol-lowering effect of plant sterol esters in cholesterol-fed hamsters. The Journal of Nutrition, 134(1), 143-148. Linassier, C., Pierre, M., Le Pecq, J. B., & Pierre, J. (1990). Mechanisms of action in NIH-3T3 cells of genistein, an inhibitor of EGF receptor tyrosine kinase activity. Biochemical Pharmacology, 39(1), 187-193. Liu, C. F., & Pan, T. M. (2011). Beneficial effects of bioactive peptides derived from soybean on human health and their production by genetic engineering. Soybean and Health (pp. 311-328). InTech. Liu, K. (1999). Soybeans: Chemistry, Technology, and Utilization. New York: Chapman and Hall. Luthria, D. L., Biswas, R., & Natarajan, S. (2007). Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean. Food Chemistry, 105(1), 325-333. Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlova, N., Karamychev, V., Polouchine, N., Shakhova, V., Grigoriev, I., Lou, Y., Rohksar, D., Lucas, S., Huang, K., Goodstein, D. M., Hawkins, T., Plengvidhya, V., Welker, D., Hughes, J., Goh, Y., Benson, A., Baldwin, K., Lee, J. H., Diaz-Muniz, I., Dosti, B., Smeianov, V., Wechter, W., Barabote, R., Lorca, G., Altermann, E., Barrangou, R., Ganesan, B., Xie, Y., Rawsthorne, H., Tamir, D., Parker, C., Breidt, F., Broadbent, J., Hutkins, R., O'Sullivan, D., Steele, J., Unlu, G., Saier, M., Klaenhammer, T., Richardson, P., Kozyavkin, S., Weimer, B., & Mills, D. (2006). Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences, 103(42), 15611-15616. Markovits, J., Linassier, C., Fossé, P., Couprie, J., Pierre, J., Jacquemin-Sablon, A., Saucier, J. M., Le Pecq, J. B., & Larsen, A. K. (1989). Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Research, 49(18), 5111-5117. Marteau, P., Flourie, B., Pochart, P., Chastang, C., Desjeux, J. F., & Rambaud, J. C. (1990). Effect of the microbial lactase (EC 3.2.1.23) activity in yoghurt on the intestinal absorption of lactose: an in vivo study in lactase-deficient humans. British Journal of Nutrition, 64(01), 71-79. Martinez, R. C. R., Wachsman, M., Torres, N. I., LeBlanc, J. G., Todorov, S. D., & Franco, B. D. G. M. (2013). Biochemical, antimicrobial and molecular characterization of a noncytotoxic bacteriocin produced by Lactobacillus plantarum ST71KS. Food Microbiology, 34(2), 376-381. Mateos-Aparicio, I., Redondo-Cuenca, A., Villanueva-Suárez, M. J., Zapata-Revilla, M. A., & Tenorio-Sanz, M. D. (2010). Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT - Food Science and Technology, 43(9), 1467-1470. Matsuo, M. (1989a). Morphological and physicochemical properties and composition of 'okara' fermented with Rhizopus oligosporus. Japan Society of Nutrition and Food Science. 42(2), 173-178. Matsuo, M. (1989b). Morphological, compositional and physicochemical properties of 'okara' fermented by Aspergillus oryzae. Journal of the Agricultural Chemical Society of Japan. 63(11), 1765-1770. McClements, D. J. (1995). Advances in the application of ultrasound in food analysis and processing. Trends in Food Science & Technology, 6(9), 293-299. McClements, D. J. (1997). Ultrasonic characterization of foods and drinks: principles, methods, and applications. Critical Reviews in Food Science and Nutrition, 37(1), 1-46. McCue, P., & Shetty, K. (2003). Role of carbohydrate-cleaving enzymes in phenolic antioxidant mobilization from whole soybean fermented with Rhizopus oligosporus. Food Biotechnology, 17(1), 27-37. Messina, M., & Barnes, S. (1991). The role of soy products in reducing risk of cancer. Journal of the National Cancer Institute, 83(8), 541-546. Messina, M. J. (1999). Legumes and soybeans: overview of their nutritional profiles and health effects. The American Journal of Clinical Nutrition, 70(3), 439S-450S. Messina, M. J., Persky, V., Setchell, K. D. R., & Barnes, S. (1994). Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutrition and Cancer, 21(2), 113-131. Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical science, 84(4), 407-412. Mitchell, J. H., Gardner, P. T., McPhail, D. B., Morrice, P. C., Collins, A. R., & Duthie, G. G. (1998). Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Archives of Biochemistry and Biophysics, 360(1), 142-148. Mombelli, B., & Gismondo, M. R. (2000). The use of probiotics in medical practice. International Journal of Antimicrobial Agents, 16(4), 531-536. Moraes Filho, M. L., Busanello, M., & Garcia, S. (2016). Optimization of the fermentation parameters for the growth of Lactobacillus in soymilk with okara flour. LWT - Food Science and Technology, 74, 456-464. Moran, J. F., Klucas, R. V., Grayer, R. J., Abian, J., & Becana, M. (1997). Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radical Biology and Medicine, 22(5), 861-870. Murakami, H., Asakawa, T., Terao, J., & Matsushita, S. (1984). Antioxidative stability of tempeh and liberation of isoflavones by fermentation. Agricultural and Biological Chemistry, 48(12), 2971-2975. Murphy, C. T., Kellie, S., & Westwick, J. (1993). Tyrosine‐kinase activity in rabbit platelets stimulated with platelet‐activating factor. European Journal of Biochemistry, 216(2), 639-651. Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054, 95-111. Naim, M., Gestetner, B., Bondi, A., & Birk, Y. (1976). Antioxidative and antihemolytic activities of soybean isoflavones. Journal of Agricultural and Food Chemistry, 24(6), 1174-1177. Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S., & Takano, T. (1995). Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. Journal of Dairy Science, 78(4), 777-783. Nguyen, T. M. P., Lee, Y. K., & Zhou, W. (2009). Stimulating fermentative activities of bifidobacteria in milk by highintensity ultrasound. International Dairy Journal, 19, 410-416. Nicolosi, R. J., Wilson, T. A., Lawton, C., & Handelman, G. J. (2001). Dietary effects on cardiovascular disease risk factors: beyond saturated fatty acids and cholesterol. Journal of the American College of Nutrition, 20(5), 421S-427S. Nielsen, I. L. F., & Williamson, G. (2007). Review of the factors affecting bioavailability of soy isoflavones in humans. Nutrition and Cancer, 57(1), 1-10. Noguchi, A. (1987). Method for the preparation of textured soybean draff. U.S. Patents. NO. 4,642,241. Nolan, A. L. (1983). Tradition combines with technology-flavored tofu. Food Engineering, 55(7), 45-45. Novoa-Diaz, D., Rodriguez-Nogales, J. M., Fernandez-Fernandez, E., Vila-Crespo, J., Garcia-Alvarez, J., Amer, M. A., Charez, J. A., Turo, A., Garcia-Hernandez, M. J., & Salazar, J. (2014). Ultrasonic monitoring of malolactic fermentation in red wines. Ultrasonics, 54(6), 1575-1580. O'Toole, D. K. (1999). Characteristics and use of okara, the soybean residue from soy milk production-a review. Journal of Agricultural and Food Chemistry, 47(2), 363-371. Ojha, K. S., Mason, T. J., O'Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410-417. Okura, A., Arakawa, H., Oka, H., Yoshinari, T., & Monden, Y. (1988). Effect of genistein on topoisomerase activity and on the growth of [Val 12] Ha-ras-transformed NIH 3T3 cells. Biochemical and Biophysical Research Communications, 157(1), 183-189. Otieno, D. O., Ashton, J. E., & Shah, N. P. (2005). Stability of β‐glucosidase activity produced by Bifidobacterium and Lactobacillus spp. in fermented soymilk during processing and storage. Journal of Food Science, 70(4), M236-M241. Otieno, D. O., Ashton, J. F., & Shah, N. P. (2006). Evaluation of enzymic potential for biotransformation of isoflavone phytoestrogen in soymilk by Bifidobacterium animalis, Lactobacillus acidophilus and Lactobacillus casei. Food Research International, 39(4), 394-407. Panesar, P. S., Kennedy, J. F., Gandhi, D. N., & Bunko, K. (2007). Bioutilisation of whey for lactic acid production. Food Chemistry, 105(1), 1-14. Parvez, S., Malik, K. A., Ah Kang, S., & Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100(6), 1171-1185. Patel, R. P., Boersma, B. J., Crawford, J. H., Hogg, N., Kirk, M., Kalyanaraman, B.,Parks, D. A., Barnes, S., & Darley-Usmar, V. (2001). Antioxidant mechanisms of isoflavones in lipid systems: paradoxical effects of peroxyl radical scavenging. Free Radical Biology and Medicine, 31(12), 1570-1581. Pham, T. T., & Shah, N. P. (2007). Biotransformation of isoflavone glycosides by Bifidobacterium animalis in soymilk supplemented with skim milk powder. Journal of Food Science, 72(8), M316-324. Polichetti, E., Diaconescu, N., De La Porte, P. L., Malli, L., Portugal, H., Pauli, A. M., Lafont, H., Tuchweber, B., Yousef, I., & Chanussot, F. (1996). Cholesterol-lowering effect of soyabean lecithin in normolipidaemic rats by stimulation of biliary lipid secretion. British Journal of Nutrition, 75(3), 471-481. Potter, S. M., Baum, J. A., Teng, H., Stillman, R. J., Shay, N. F., & Erdman, J. W. (1998). Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. The American Journal of Clinical Nutrition, 68(6), 1375S-1379S. Pyo, Y. H., Lee, T. C., & Lee, Y. C. (2005). Enrichment of bioactive isoflavones in soymilk fermented with β-glucosidase-producing lactic acid bacteria. Food Research International, 38(5), 551-559. Qian, Z. J., Jung, W. K., & Kim, S. K. (2008). Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresource Technology, 99(6), 1690-1698. Rackis, J. J., Sessa, D. J., Steggerda, F. R., Shimizu, T., Anderson, J., & Pearl, S. L. (1970). Soybean factors relating to gas production by intestinal bacteria. Journal of Food Science, 35(5), 634-639. Rafter, J. (2002). Lactic acid bacteria and cancer: mechanistic perspective. British Journal of Nutrition, 88, S89-S94. Rashad, M. M., Mahmoud, A. E., Abdou, H. M., & Nooman, M. U. (2011). Improvement of nutritional quality and antioxidant activities of yeast fermented soybean curd residue. African Journal of Biotechnology, 10(28), 5504-5513. Riaz, M. N. (2005). Soy Applications in Food. CRC Press. Rival, S. G., Fornaroli, S., Boeriu, C. G., & Wichers, H. J. (2001). Caseins and casein hydrolysates. 1. Lipoxygenase inhibitory properties. Journal of Agricultural and Food Chemistry, 49(1), 287-294. Rodriguez, R. J., Miranda, C. L., Stevens, J. F., Deinzer, M. L., & Buhler, D. R. (2001). Influence of prenylated and non-prenylated flavonoids on liver microsomal lipid peroxidation and oxidative injury in rat hepatocytes. Food and Chemical Toxicology, 39(5), 437-445. Romero, A. M., Doval, M. M., Sturla, M. A., & Judis, M. A. (2004). Antioxidant properties of polyphenol-containing extract from soybean fermented with Saccharomyces cerevisiae. European Journal of Lipid Science and Technology, 106(7), 424-431. Saarela, M., Lähteenmäki, L., Crittenden, R., Salminen, S., & Mattila-Sandholm, T. (2002). Gut bacteria and health foods—the European perspective. International Journal of Food Microbiology, 78(1), 99-117. Sabia, C., Anacarso, I., Bergonzini, A., Gargiulo, R., Sarti, M., Condo, C., Messi, P., deNiederhausern, S., & Iseppi, R. (2014). Detection and partial characterization of a bacteriocin-like substance produced by Lactobacillus fermentum CS57 isolated from human vaginal secretions. Anaerobe, 26, 41-45. Sanders, M. E., Walker, D. C., Walker, K. M., Aoyama, K., & Klaenhammer, T. R. (1996). Performance of commercial cultures in fluid milk applications. Journal of Dairy Science, 79(6), 943-955. Sarkar, P. K., Jones, L. J., Craven, G. S., Somerset, S. M., & Palmer, C. (1997). Amino acid profiles of kinema, a soybean-fermented food. Food Chemistry, 59(1), 69-75. Sasson, Y., & Neumann, R. (2012). Handbook of phase transfer catalysis. Springer Science and Business Media. Scalabrini, P., Rossi, M., Spettoli, P., & Matteuzzi, D. (1998). Characterization of Bifidobacterium strains for use in soymilk fermentation. International Journal of Food Microbiology, 39(3), 213-219. Schingoethe, D. J. (1997). Balancing the amino acid needs of the dairy cow. Animal Feed Science and Technology, 60, 153-160. Sestelo, A. B. F., Poza, M., & Villa, T. G. (2004). β-glucosidase activity in a Lactobacillus plantarum wine strain. World Journal of Microbiology and Biotechnology, 20(6), 633-637. Silva, I., Campos, F. M., Hogg, T., & Couto, J. A. (2011). Factors influencing the production of volatile phenols by wine lactic acid bacteria. International Journal of Food Microbiology, 145, 471-475. Singh, N., & Rajini, P. S. (2004). Free radical scavenging activity of an aqueous extract of potato peel. Food Chemistry, 85(4), 611-616. Sirtori, C. R., & Lovati, M. R. (2001). Soy proteins and cardiovascular disease. Current Atherosclerosis Reports, 3(1), 47-53. Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21(7), 323-331. Southcott, E., Tooley, K. L., Howarth, G. S., Davidson, G. P., & Butler, R. N. (2008). Yoghurts containing probiotics reduce disruption of the small intestinal barrier in methotrexate-treated rats. Digestive Diseases and Sciences, 53(7), 1837-1841. Sumida, M., Yuhki, T., Chen, R., Mori, H., Imamura, T., & Matsubara, F. (1995). Aseptic rearing of original silkworm strains on an artificial diet throughout the entire larval instars. The Journal of Sericultural Science of Japan, 64(1), 35-38. Surel, O., & Couplet, B. (2005). Influence of the dehydration process on active compounds of okara during its fractionation. Journal of the Science of Food and Agriculture, 85(8), 1343-1349. Suslick, K. S. (1990). Sonochemistry. Science, 247(4949), 1439-1446. Suslick, K. S. (1994). The chemistry of ultrasound. Encyclopaedia Britannica, Chicago, 138-155. Swain, M. R., Anandharaj, M., Ray, R. C., & Parveen Rani, R. (2014). Fermented fruits and vegetables of Asia: a potential source of probiotics. Biotechnology Research International, 2014. Taranto, M. P., Medici, M., Perdigon, G., Holgado, A. P. R., & Valdez, G. F. (1998). Evidence for hypocholesterolemic effect of Lactobacillus reuteri in hypercholesterolemic mice. Journal of Dairy Science, 81(9), 2336-2340. Thananunkul, D., Tanaka, M., Chichester, C., & Lee, T. C. (1976). Degradation of raffinose and stachyose in soybean milk by β-galactosidase from Mortierella vinacea. Entrapment of α‐galactosidase within polyacrylamide gel. Journal of Food Science, 41(1), 173-175. Thippeswamy, S., & Mulimani, V. H. (2002). Enzymic degradation of raffinose family oligosaccharides in soymilk by immobilized α-galactosidase from Gibberella fujikuroi. Process Biochemistry, 38(5), 635-640. Thomas, T. D., Ellwood, D. C., & Longyear, V. M. C. (1979). Change from homo-to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. Journal of Bacteriology, 138(1), 109-117. Thomas, T. D., & Pritchard, G. G. (1987). Proteolytic enzymes of dairy starter cultures. Federation of European Microbiological Societies Microbiology Reviews, 46(3), 245-268. Torino, M. I., Limon, R. I., Martinez-Villaluenga, C., Makinen, S., Pihlanto, A., Vidal-Valverde, C., & Frias, J. (2013). Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chemistry, 136(2), 1030-1037. Tsai, Y. T., Cheng, P. C., & Pan, T. M. (2012). The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Applied Microbiology and Biotechnology, 96(4), 853-862. Tsangalis, D., Ashton, J. F., Stojanovska, L., Wilcox, G., & Shah, N. P. (2004). Development of an isoflavone aglycone-enriched soymilk using soy germ, soy protein isolate and bifidobacteria. Food Research International, 37(4), 301-312. Vong, W. C., & Liu, S. Q. (2016). Biovalorisation of okara (soybean residue) for food and nutrition. Trends in Food Science & Technology, 52, 139-147. Wang, D., Sakakibara, M., Kondoh, N., & Suzuki, K. (1996). Ultrasound‐enhanced lactose hydrolysis in milk fermentation with Lactobacillus bulgaricus. Journal of Chemical Technology and Biotechnology, 65(1), 86-92. Wang, H. J., & Murphy, P. A. (1996). Mass balance study of isoflavones during soybean processing. Journal of Agricultural and Food Chemistry, 44(8), 2377-2383. Wang, H. L., & Cavins, J. F. (1989). Yield and amino acid composition of fractions obtained during tofu production. Cereal Chemistry, 66(5), 359-361. Wang, Y. C., Yu, R. C., Yang, H. Y., & Chou, C. C. (2003). Sugar and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with bifidobacteria. Food Microbiology, 20(3), 333-338. Wang, Y. C., Yu, R. C., & Chou, C. C. (2006). Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol, 23(2), 128-135. Wang, Z., Li, T., Liu, F., Zhang, C., Ma, H., Wang, L., & Zhao, S. (2017). Effects of ultrasonic treatment on the maturation of Zhenjiang vinegar. Ultrasonics Sonochemistry, 39, 272-280. Watanabe, K., Kanoh, H., Yamanaka, S., Okiyama, A., & Kawanishi, T. (1997). Low calorie foodstuff, aqueous paste composition, as well as production process thereof. U.S. Patents. NO. 5,690,981. Wei, Q. K., Jone, W. W., & Fang, T. J. (2004). Study on isoflavones isomers contents in Taiwan's soybean and GM soybean. Journal of Food and Drug Analysis, 12(4), 324-331. Wyszynska, A., Kobierecka, P., Bardowski, J., & Jagusztyn-Krynicka, E. K. (2015). Lactic acid bacteria--20 years exploring their potential as live vectors for mucosal vaccination. Applied Microbiology and Biotechnology, 99(7), 2967-2977. Xiao, Y., Xing, G., Rui, X., Li, W., Chen, X., Jiang, M., & Dong, M. (2014). Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. Journal of Functional Foods, 10, 210-222. Xiudong, X., Ying, W., Xiaoli, L., Ying, L., & Jianzhong, Z. (2016). Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions. PeerJ, 4, e2701. Xu, J., Liu, W., Yao, W., Pang, X., Yin, D., & Gao, X. (2009). Carboxymethylation of a polysaccharide extracted from Ganoderma lucidum enhances its antioxidant activities in vitro. Carbohydrate Polymers, 78(2), 227-234. Xu, X. (1995). Human bioavailability and health protective effects of soy isoflavones. Xu, X., Harris, K. S., Wang, H. J., Murphy, P. A., & Hendrich, S. (1995). Bioavailability of soybean isoflavones depends upon gut microflora in women. The Journal of Nutrition, 125(9), 2307-2315. Yamaguchi, T., Takamura, H., Matoba, T., & Terao, J. (1998). HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Bioscience, Biotechnology, and Biochemistry, 62(6), 1201-1204. Yamauchi, R., Tatsumi, Y., Asano, M., Kato, K., & Ueno, Y. (1988). Effect of metal salts and fructose on the autoxidation of methyl linoleate in emulsions. Agricultural and Biological Chemistry, 52(3), 849-850. Yamori, Y., Moriguchi, E. H., Teramoto, T., Miura, A., Fukui, Y., Honda, K., Fukui, M., Nara, Y., Taira, K., & Moriguchi, Y. (2002). Soybean isoflavones reduce postmenopausal bone resorption in female Japanese immigrants in Brazil: a ten-week study. Journal of the American College of Nutrition, 21(6), 560-563. Yang, S., Wang, L., Yan, Q., Jiang, Z., & Li, L. (2009). Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomyces thermophila. Food Chemistry, 115(4), 1247-1252. Yen, G. C., & Lai, H. H. (2002). Inhibitory effects of isoflavones on nitric oxide- or peroxynitrite-mediated DNA damage in RAW 264.7 cells and φX174 DNA. Food and Chemical Toxicology, 40(10), 1433-1440. Yeo, S. K., & Liong, M. T. (2013). Effect of ultrasound on bioconversion of isoflavones and probiotic properties of parent organisms and subsequent passages of Lactobacillus. LWT - Food Science and Technology, 51(1), 289-295. Yeo, S. K., & Liong, M. T. (2011). Effect of ultrasound on the growth of probiotics and bioconversion of isoflavones in prebiotic-supplemented soymilk. Journal of Agricultural and Food Chemistry, 59(3), 885-897. Yoshii, H., Furuta, T., Maeda, H., & Mori, H. (1996). Hydrolysis kinetics of okara and characterization of its water-soluble polysaccharides. Bioscience Biotechnology and Biochemistry, 60(9), 1406-1409. Yu, J., Zhang, X., & Tan, T. (2007). An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. Journal Biotechnology, 129(3), 415-420. Zhang, S. T., Shi, Y., Zhang, S. L., Shang, W., Gao, X. Q., & Wang, H. (2014). Whole soybean as probiotic lactic acid bacteria carrier food in solid-state fermentation. Food Control, 41, 1-6. Zhao, D., & Shah, N. P. (2014). Changes in antioxidant capacity, isoflavone profile, phenolic and vitamin contents in soymilk during extended fermentation. LWT - Food Science and Technology, 58(2), 454-462. Zheng, X., Zhang, M., Fang, Z., & Liu, Y. (2014). Effects of low frequency ultrasonic treatment on the maturation of steeped greengage wine. Food Chemistry, 162, 264-269. Zou, Y., Liu, F., Fang, C., Wan, D., Yang, R., Su, Q., Yang, R., & Zhao, J. (2013). Lactobacillus shenzhenensis sp. nov., isolated from a fermented dairy beverage. International Journal of Systematic and Evolutionary Microbiology, 63(5), 1817-1823.
摘要: 豆渣為黃豆加工時產生之副產物,在台灣平均每年會生產約58萬噸豆渣,而豆渣中含有許多機能性成分,如異黃酮 (isoflavones)、酚酸 (phenolic acid) 及植物固醇 (phytosterols) 等,但因為其水分含量高易導致腐敗,且具有豆臭味和造成脹氣等缺點,因此常被丟棄或作為飼料、肥料用,故若能將豆渣充分利用則可減少副產物之產量。 本研究篩選三株植物性乳酸菌 (Lactobacillus plantarum BCRC 10357、Lactobacillus brevis BCRC 12187及Lactobacillus fermentum BCRC 12190),其中L. plantarum BCRC 10357在豆渣培養基中生長最佳,故選擇其作為後續實驗之菌株。實驗結果顯示L. plantarum BCRC 10357自培養2小時後進入對數生長期 (exponential phase),7小時進入靜止期 (stationary phase),22小時進入死亡期 (death phase)。本實驗選擇以培養5小時之L. plantarum BCRC 10357菌液進行不同超音波強度與時間的處理,結果發現超音波處理可以延長L. plantarum BCRC 10357之靜止期,且超音波強度60%、作用時間2分鐘之組別其β-葡萄糖苷酶活性 (β-glucosidase) 最高,接著比較在L. plantarum BCRC 10357不同生長期進行超音波處理之差異,將培養5、10、24小時之菌液進行超音波強度60%、作用時間2分鐘的處理,結果顯示將培養24小時之菌液進行超音波處理後,繼續培養可得最高之β-葡萄糖苷酶活性,最後探討不同超音波處理方式對L. plantarum BCRC 10357的影響,結果以連續式超音波處理最佳。綜合上述,本研究選擇將培養24小時之L. plantarum BCRC 10357進行連續式超音波處理後接種至不同豆渣比例之培養基進行發酵。 L. plantarum BCRC 10357經超音波處理後接種至豆渣培養基發酵24小時,其菌數可達10^9 cfu/mL以上,而β-葡萄糖苷酶活性部分,以添加3% 和5% 豆渣之組別最佳。發酵期間,β-葡萄糖苷酶可轉換豆渣中異黃酮的形式,其中daidzin和genistin含量分別減少約78.81% 和66.62%,且隨著豆渣添加比例增加,其減少比例下降;反之,daidzein和genistein含量則分別增加約54.59% 和48.95%,比較其異黃酮生物轉換率,發現添加1% 豆渣之培養基的異黃酮生物轉換率最好,高達90.89%,故選擇將添加1% 豆渣發酵之組別進行抗氧化及顯微結構分析試驗。 發酵期間,豆渣之螯合亞鐵離子能力及DPPH自由基清除能力會隨時間增加而減少,但在發酵48小時後仍可保持在50% 以上;相反地,豆渣之總抗氧化能力會隨著發酵時間延長而增加,其中又以經超音波處理之L. plantarum BCRC 10357發酵的組別最佳,其總抗氧化力可在發酵24小時後達到80.92%,因此可說明乳酸菌發酵為一提升豆渣之機能性的方式。顯微結構分析之結果顯示,超音波處理可導致L. plantarum BCRC 10357菌體破裂形成孔洞,且接種至結構鬆散的豆渣中,可緊密黏附於表面,並持續生長。
Okara is a by-product obtained during the soy food processing. The amount of okara produced annually in Taiwan is 580,000 tons. Okara holds abundant functional ingredients, such as isoflavones, phenolic acid and phytosterols. However, most of okara is discarded or used as feeds or fertilizers due to the high moisture contents making it very perishable, beany off-flavor and flatulence-causing oligosaccharides in okara. It is possible to reduce the amount of wastes by fully utilizing the okara. In this study, the growth of Lactobacillus plantarum BCRC 10357 was the best among three selected plant origin lactic acid bacteria, including L. plantarum BCRC 10357, Lactobacillus brevis BCRC 12187 and Lactobacillus fermentum BCRC 12190. The results showed that L. plantarum BCRC 10357 entered the exponential phase after 2 hr of incubation, the stationary phase after 7 hr of incubation and the death phase after 22 hr of incubation. The results of L. plantarum BCRC 10357 treated with different ultrasound intensities and durations after 5 hr of incubation indicated that ultrasonic treatment was able to extend the stationary phase of L. plantarum BCRC 10357 and the highest of β-glucosidase activity was found in L. plantarum BCRC 10357 treated with ultrasound at amplitude of 60% for 2 min. Then, it was compared with the different growth phase of L. plantarum BCRC 10357 with ultrasonic treatment. It was observed that L. plantarum BCRC 10357 subjected to ultrasonic treatment after 24 hr of incubation had the highest β-glucosidase activity among all tested groups. Subsequently, the effect of ultrasonic processing methods was investigated. The results indicated that L. plantarum BCRC 10357 treated with continuous ultrasonication was the best in all tests. According to the results, L. plantarum BCRC 10357 after 24 hr of incubation treated with continuous ultrasonication was investigated in okara fermentation. The viable counts of L. plantarum BCRC 10357, treated with ultrasound, in okara was above 10^9 cfu/mL after 24 hr of fermentation. MRS broth supplemented with 3% and 5% of okara and fermented by L. plantarum BCRC 10357 treated with ultrasound showed the highest β-glucosidase activity. During the fermentation period, β-glucosidase could biotransform isoflavone glucosides to aglycones in okara and the contents of daidzin and genistin decreased 78.81% and 66.62%, respectively. While the contents of supplemented okara increased, the proportion of reduction of daidzin and genistin decreased. Conversely, the contents of daidzein and genistein increased 54.59% and 48.95%, respectively. For the comparison of isoflavone bioconversion rate among the groups with various okara's concentration, it was indicated that the bioconversion rate of MRS broth with 1% okara was the highest (90.89%). According to the results, MRS broth with 1% okara fermented by L. plantarum BCRC 10357 treated with ultrasound was selected for the following tests of antioxidant capacity and microstructure analysis by field emission scanning electron microscope (FESEM). Despite the fact that the ferrous ion chelating ability and DPPH radical scavenging ability of fermented okara decreased gradually during the fermentation period, there was above 50% after fermentation for 48hr. On the other hand, the ABTS radical scavenging ability of fermented okara increased steadily during the fermentation period. After 24 hr of fermentation, okara fermented by L. plantarum BCRC 10357 treated with ultrasound had higher activity reaching 80.92%. Therefore, it was indicated that fermentation by lactic acid bacteria was one of the methods for improving the functional properties of okara. The results of microstructure analysis showed that ultrasonic treatment led to the rupture of cells and formed pores on the surface of bacteria. When the okara with loose structures was inoculated with L. plantarum BCRC 10357 treated with ultrasound, bacteria adhered onto the okara's surface tightly and grew continuously.
URI: http://hdl.handle.net/11455/96066
文章公開時間: 2020-08-28
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.