Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96232
標題: The effect of various combinations of light-emitting diodes (LEDs) on the growth of lettuces (Lactuca sativa L.) grown in hydroponic system
以水耕探討不同波長組合之LED燈對萵苣生長之影響
作者: Ting-Chu Wei
魏庭竹
關鍵字: 水耕
萵苣
發光二極體
hydroponics
lettuce
light-emitting diode
引用: 小綠人光通平台。2014。植物生長燈具輻射能量和光子通量計算。圖片擷取日期:2016/11/01 方煒。1998。溫室環境控制工程。種苗生產自動化通訊 (3) 98008: 1-15。 方煒。2010。以植物工廠生產農作物與綠能產業研究發展。生農學院10: 7-10。 方煒。2012。台灣植物工廠發展現況與展望。台南區農業改良場。精密設施工程與植物工場實用化技術研討會專輯。p. 16-24。 方煒。2016。PE 之養液栽培。查詢日期2016.12.03 http://www.ecaa.ntu.edu.tw/weifang/class-cea/養液栽培v10.pdf。 王三太、王毓華。2005。莧菜。臺灣農家要覽。行政院農業委員會。p. 399-402。 王三太、林子凱。2005。小白菜。臺灣農家要覽。行政院農業委員會。p. 423-428。 王銀波。1989。培養液的化學性及其管理。養液栽培技術講習會專刊第二輯。臺灣省農業試驗所鳳山熱帶園藝試驗分所。p. 60-68。 行政院農委會網站。http://agrstat.coa.gov.tw/sdweb/public/trade/tradereport.aspx。 查詢日期2017.03.03 余津聚。2011。水耕葉菜類營養元素吸收之研究。國立中興大學園藝學系碩士論文。 吳正宗。2012。無土栽培的營養管理。國立中興大學土壤環境科學系。p. 166。 李伯年。1987。蔬菜育種與採種。國立編譯館主編。茂昌圖書公司印行。p. 421。 李雯琳、郁繼華、楊其長。2013。不同光質對葉用萵苣種子萌發和幼苗酶活性的影響。甘肅農業大學學報48: 44-49。 沈再發。1990。植物生長與養液要素之關係。養液栽培技術講習會專刊第三輯。臺灣省農業試驗所鳳山熱帶園藝試驗分所。p. 9-13。 沈再發。1997。養液的配置與管理。設施園藝技術。p. 182-190。 沈再發、許淼淼。1989。作物的營養特性及影響養液組成之因素。養液栽培技術講習會專刊第二輯。臺灣省農業試驗所鳳山熱帶園藝試驗分所。p. 44-59。 林月金、高德錚。1995。臺灣蔬菜養液栽培之成本及收益分析。養液栽培技術講習會專刊第五輯。台中區農業改良場。p. 25-41。 林玉梅、王藍亭。2011。LED 照明光源與傳統照明差異性之研究-以燈泡造型為主。照明學刊28: 24-37。 林岱平。2006。在亞熱帶生產低硝酸鹽蔬菜-主婦聯盟生活消費合作社檢驗資料之分析。國立臺灣大學園藝研究所碩士論文。 林佳妮。2009。光值處理對茶樹茶菁兒茶素及葉綠素含量之影響。國立嘉義大學農藝學系暨研究所碩士論文。 林杰樑。2003。生活中的毒:看不見的隱形殺手。宏欣文化。 林益昇、黃淑華。1993。腐霉菌 (Pythium spp.) 引起水耕蔬菜根腐病。植物保護學會會刊35: 51-61。 林淑怡、張至緣、郭美琳、羅筱鳳。2016。密閉式植物工場水耕栽培結球萵苣之研究。臺灣園藝62: 17-32。 林棟樑。2005。萵苣。臺灣農家要覽。行政院農業委員會。p. 409-412。 林慈鈺。2015。LED、硒及硫酸鉀處理對水耕油菜生長及硝酸根離子含量之影響。國立中興大學園藝學系碩士論文。 柯勇。2002。植物生理學。藝軒圖書出版社。 洪明谷。2012。人工光源對甘藍'和風'、結球白菜'瑞喜'穴盤苗及水耕小白菜'台農一號'生長及品質之影響。國立中興大學園藝學系碩士論文。 徐凱、郭延平、張上隆。2005。不同光質對草莓葉片光合作用和葉綠素熒光的影響。中國農業科學38: 369-375。 高德錚。1991。動態式浮根式水耕系統之開發與利用。台中區農業改良場。 高德錚。2010。影響蔬菜中硝酸鹽含量之探討。臺中區農業改良場特刊。105: 234-239。 崔瑾、徐志剛、邸秀茹。2008。LED在植物設施栽培中的應用和前景。農業工程學報24: 249-253。 張仲民譯。1981。作物之營養與肥料。徐氏基金會。 張祖亮。1998。養液栽培之應用技術。種苗生產自動化通訊 (3) 98003: 1-12。 張祖亮。2016。養液栽培之應用技術。設施生產自動化技術電子書。查詢日期:2016/11/27。網址:http://www.ecaa.ntu.edu.tw/weifang/Hort/main.html。 張淳皓、陳世銘、蔡兆胤、羅筱鳳、顏炳郎。2013。應用於循環式養液系統之電導度與酸鹼度調配控制系統。農業機械學刊22: 129-143。 張簡秀容。1999。葉萵苣栽培管理。台灣農業35: 48-50。 許創盛。2005。水耕結球萵苣養液經濟管理探討。國立中興大學土壤環境科學系碩士論文。 許淼淼、沈再發。1988。浮根式水耕。養液栽培技術講習會專刊第一輯。臺灣省農業試驗所鳳山熱帶園藝試驗分所。p. 49-57。 許榮華。2011。缺氧逆境對植物根部生育之影響。台中區農業改良場一百年專題討論專集111: 222-226 郭孚燿。2005。茼蒿。臺灣農家要覽。行政院農業委員會。p. 413-414。 郭啟田。2010。市面上各種燈具光源介紹。經濟部能源局能源報導-能源與生活。p. 32-34。 陳仁炫、林正錺、郭惠千。1993。作物養分需求及植體分析之分級標準彙集。國立中興大學土壤研究所。p. 29、75、81、86、88、95。 陳世銘、方煒、羅筱鳳、曹幸之、張耀乾、廖國基、顏炳郎、蔡兆胤。2011。台灣植物工廠現況與發展策略之分析。農業機械學刊20: 95-106。 陳令錫。2012。光線量測與植物生長。台中區農業改良場一百年專題討論專集。p. 64-71。 陳祥偉、劉世琦、劉慶、成波、馮磊、劉景凱。2013。不同LED光源對小白菜生長及光合特性的影響。北方園藝22: 1-4。 陳葦玲、周書緯、李品瑩、邱瑜君、張雅文。2010。氮肥及鉬離子對油菜及青梗白菜硝酸鹽累積量之影響。臺中區農業改良場研究彙報。106: 11-22。 陳詩文。2015。建立低硝酸鹽含量小白菜之栽培管理模式。國立中興大學園藝學系博士論文。 馮丁樹。1998。網室及養液栽培裝置。種苗生產自動化通訊 (3) 98002: 1-23。 黃淑華、林益昇、郭孟祥。1994。水耕蔬菜根腐病接種源來源、傳播與防治。植物保護學會會刊36: 41-42。 楊純明。李裕娟。2009。從植物之光週期看發光二極體在農業生產上之應用潛力。作物、環境與生物資訊6: 192-200。 聞婧、楊其長、魏靈玲、程瑞鋒、劉文科、鮑順淑、周晚來。2011。不同紅藍LED組合光源對葉用萵苣光合特性及品質的影響及節能評價。園藝學報38: 761-769。 劉冠伶。2011。植物工廠量產低硝酸鹽萵苣之研究。國立臺灣大學生農學院生物產業機電工程學系碩士論文。 劉政道、林麗玉。2005。蕹菜。臺灣農家要覽。行政院農業委員會。p. 403-408。 劉啟祥。1993。根溫處理對水耕小白菜生理之影響。國立中興大學園藝學系碩士論文。 劉曉英、焦學磊、徐志剛、楊楊。2013。紅藍 LED 光對葉用萵苣生長、營養品質和硝態氮含量的影響。南京農業大學學報36: 139-143。 蔡尚光。1994。水耕栽培的經驗。淑馨出版社。 鄭志玄。2011。自動化 LED 植物工廠。國立成功大學工程科學系碩士論文。 戴振洋、蔡宜峰、郭孚燿。1996。肥料對不同品種甘藍穴盤苗生長之影響。臺中區農業改良場研究彙報50: 11-20。 魏靈玲、楊其長、劉水麗。2007。LED 在植物工廠中的研究現狀與應用前景。中國農業通報23: 408-410。 Anna, B., and K. Alicja. 2001. Effect of light quality on somatic embryogenesis in Hyacinthus orientalis L. 'Delft's blue'. Biological Bulletin of Poznan 38: 103-107. Barbosa, G.L., F.D. Gadelha, N. Kublik, A. Proctor, L. Reichelm, and E. Weissinger. 2015. Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. Int. J. Environ. Res. Public Health 12: 6879-6891. Borowski, E., B.H. Nowak, and S. Michaek. 2014. The response of lettuce to fluorescent light and led light relative to different nitrogen nutrition of plants. Acta Sci. Pol., Hortorum Cultus 13: 211-224. Bourget, C. M. 2008. An introduction to light-emitting diodes. Hortscience 43: 1944-1946. Buchanan, W.V. 1997. The molecular biology of leaf senescence. J. Exp. Bot. 48: 181-199. Buchanan, D.N., and S.T. Omaye. 2013. Comparative study of ascorbic acid and tocopherol concentrations in hydroponic- and soil-grown lettuces. Food Nutr. Sci. 4: 1047-1053. Bukhov, N.G., I.S. Drozdova, and V.V. Bondar. 1995. Light response curves of photosynthesis in leaves of sun-type and shade-type plants grown in blue or red light. J. Photochem. Photobiol., B 30: 39-41. Bula, R.J., R.C. Morrow, T.W. Tibbitts, D.J. Barta, R.W. Ignatius, and T.S. Martin. 1991. Light-emitting-diodes as a radiation source for plants. Hortscience 26: 203-205. Chapman, H.D. 1966. Diagnostic criteria for plant and soils. Univ. Calif., Div.Agric. Sci., U.S. A. 793. Chen, R., H. Liu, S. Song, G. Sun, and R. Chen. 2015. Effects of light quality on growth and quality of lettuces in hydroponic. Solid State Lighting (SSLCHINA). 154-156. Chen, X.L., W.Z. Guo, X. Xue, L.C. Wang, and X.J. Qiao. 2014. Growth and quality responses of 'Green Oak Leaf' lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Sci. Hortic. 172: 168-175. Chowdhury, A., and A. Das. 2015. Nitrate accumulation and vegetable quality international. Journal of Science and Research. 4: 1668-1672. Cooper, A.J. 1976. Nutrient film technique for growing crops. Grower books, London, England. Custic, M., M. Poljak, L. Coga, T. Cosic, N. Toth, and M. Pecina. 2003. The influence of organic and mineral fertilization on nutrient status, nitrate accumulation, and yield of head chicory. Plant Soil Environ. 49: 218-222. Nelson, D. L., and M. M. Cox. 2008. Lehninger principles of biochemistry,5th edition. W. H. Freeman and Company. Dougher, T. A.O. and B. Bugbee. 2004. Long-term blue light effects on the histology of lettuce and soybean leaves and stems. J. Am. Soc. for Hortic. Sci. 129: 467-472. Fageria, V.D. 2001. Nutrient interactions in crop plants. J. Plant Nutr. 24: 1269-1290. Folta, K.M., and K.S. Childers. 2008. Light as a growth regulator: controlling plant biology with narrow-bandwidth solid-state lighting systems. HortScience 43: 1957-1964. Folta, K.M. and S.A. Maruhnich. 2007. Green light: a signal to slow down or stop. J Exp Bot. 58: 3099-3111. Gangolli, S.D., P. van den Brandt, V. Feron, C. Janzowsky, C. Janz-wsky, J. Koeman, G. Speijers, B. Speigelhalder, R. Walker, and J. Winshnok. 1994. Assessment of nitrate, nitrite, and N-nitroso compounds. Environmental Toxicology and Pharmacology 292: 1-38. Goins, G.D., N.C. Yorio, and M.M. Sanwo. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under light emitting diodes (LEDs) with or without supplemental blue lighting. J. Exp. Bot. 48: 1407-1413. Hogewoning, S.W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and J. Harbinson. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 61: 3107-3117. Jackson, S. D. 2009. Plant responses to photoperiod. New Phytol. 181: 517-531. Johkan, M., K. Shoji, F. Goto, S. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplantinging in red leaf lettuce. Hortscience 45: 1809-1814. Johkan, M., K. Shoji, F. Goto, S. Hahida and, T. Yoshihara. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Exp. Bot. 75: 128-133. Kato, T. 1986. Nitrogen metabolism and utilization in citrus. Hort. Rev. 8: 181-216. Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004a. Green-light supplementation for enhanced lettuce growth under red and blue light-emitting diodes. HortScience 39: 1617-1622. Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004b. Stomatal conductance of lettuce grown under or exposed to different light qualities. Ann. Bot. 94: 691-697. Kim, H.H., R.M. Wheeler, J.C. Sager, G.D. Goins, and J.H. Norikane. 2006. Evaluation of lettuce growth using supplemental green light with red and blue light-emitting diodes in a controlled environment-A review of research at Kennedy Space Center. Acta Hort. 711: 111-119. Kim, S.J., E.J. Hahn, J.W. Heo, and K.Y. Paek. 2004c. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hortic. 101: 143-151. Kobayashi, K., T. Amore and M. Lazaro. 2013. Light-emitting diodes (LEDs) for miniature hydroponic lettuce. Optics and Photonics Journal. 3: 74-77. Lin, K.H., M.Y. Huang, W.D. Huang, M.H. Hsu, Z.W. Yang, and C.M. Yang. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hortic. 150: 86-91. Martineau, V., M. Lefsrud, M.T. Naznin, and D.A. Kopsell. 2012. Comparison of light-emitting diode and high-pressure sodium light treatments for hydroponics growth of Boston Lettuce. Hortscience 47: 477-482. Massa, G.D., H.H. Kim, R.M. Wheeler, and C.A. Mitchell. 2008. Plant productivity in response to LED lighting. Hortscience 43: 1951-1956. Matsuda, R., K.O. Kaneko, K. Fujiwara, and K. Kurata. 2008. Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Plant Cell Physiol. 49: 664-670. McAvoy, R.J. 1984. The use of high pressure sodium lights in greenhouse tomato crop production. Acta Hort. 148: 877-888. Michalska, M., and H. Asp. 2001. Influence of lead and cadmium on growth, heavy metal uptake, and nutrient concentration of three lettuce cultivars grown in hydroponic culture. Commun. Soil. Sci. Piant. 32: 571-583. Morrow, R.C. 2008. LED lighting in horticulture. HortScience 43: 1947-1950. Muneer, S., E.J. Kim, J.S. Park, and J.H. Lee. 2014. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int. J. Mol. Sci. 15: 4657-4670. Oh, S.A., J.H. Park, G.I. Lee, K.H. Paek, S.K. Park, and H.G. Nam. 1997. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J. 12: 527-535. Keiko, O., M. Takase, and N. Kon. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ. Control Biol. 45: 189-198. Keiko. K.K., R. Matsuda, E. Goto, K. Fujiwara, and K. Kurata. 2006. Growth of rice plants under red light with or without supplemental blue light. Soil Sci. Plant Nutr. 52: 444-452. Samarakoon, U.C., P.A. Weerasinghe, and W.A.P. Weerakkody. 2006. Effect of electrical conductivity [EC] of the nutrient solution on nutrient uptake, growth and yield of leaf lettuce (Lactuca sativa L.) in stationary culture. Tropical Agricultural Research 18: 13-21. Santamaria, P. 2006. Nitrate in vegetables:toxicity, content, intake and EC regulation. J. Sci. Food Agric. 86: 10-17. Shin, Y.S., M.J. Lee, E.S. Lee, J.H. Ahn, H.W. Do, and D.W. Choi. 2012. Effect of LEDs (Light Emitting Diodes) irradiation on growth and mineral absorption of lettuce (Lactuca sativa L. 'Lollo Rosa'). Korean Journal of Organic Agri. 21: 659-668. Smith, D.L. 1987. Rock wool in horticulture. Grower books, London, England. Son, K.H. and M.M. Oh. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. Hortscience 48: 988-995. Speijers, G.J.A. 1996. Nitrate, in toxicological evaluation of certain food additives and contaminants in food. World Health Organization, Food Additives Series 35, Geneva 325-360. Taiz L. and E. Zeiger. 2010. Plant Physiology. Sinauer Associates Inc. U.S.A.。 Terashima, I., T. Fujita, T. Inoue, W.S. Chow, and R. Oguchi. 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light:revisiting the enigmatic question of why leaves are green. Plant Cell Physiol. 50: 684-697. Terry, N., and A. Ulrich. 1974. Photosynthetic and respiratory CO2 exchange of sugar beet leaves as influenced by manganese deficiency. Crop Sci.14: 502-504. Tichý, V., M. Poulson, J.U. Grobbelaar, F. Xiong, and L. Nedbal. 1995. Photosynthesis, growth and photoinhibition of microalgae exposed to intermittent light. 4921-4924. Vieira, I.S., E.P. Vasconselos, and A.A. Monteiro. 1998. Nitrate accumulation, yield and leaf quality of turnip greens in response to nitrogen fertilisation, Nutr. Cycl. Agroecosys. 51: 249-258. Whitelam G. and K. Halliday. 2007. Light and plant development. Blackwell Publishing, Oxford. Yorio, N.C., G.D. Goins, H.R. Kagie, R.M. Wheeler, and J.C. Sager. 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 36: 380-383.
摘要: 萵苣 (Lactuca sativa L.) 為現代農業具高經濟價值作物之一,栽培品種的形態及色彩變化相當豐富。為避免作物的產量、品質受環境影響,且減少所需勞力,因此許多科學家紛紛投身於室內耕種作物之研究。本研究以葉萵苣探討不同品系對光波及養分的需求是否有差異。研究共分成13組處理,包括以紅光 (665、680、700 nm)、藍光 (445、450、460 nm)、綠光 (516 nm) 所搭配組成之11組不同波長組合之LED燈 (T1-T11),並以1組日光燈管 (T12)、1組市售植物燈管 (T13) 作為對照組,以不同波長組合之LED燈配合靜置式養液栽培方法,於非密閉式之地下室種植紅翠、翠容及大將三種萵苣,於移植至栽培盆中後第10、20、30天時調查植株之外觀、SPAD值、地上部鮮乾重、根冠比、株高、根長、根部鮮乾重、部分養分濃度;養液pH、EC值等性質。研究結果顯示,市售之植物燈管 (T13) 植後30天萵苣的鮮重及乾重都是最高,次高產量則和萵苣種類有所差異:紅翠鮮重T13 > T1 (445 + 665 nm) > T6 (445 nm) > T4 (460 + 680 + 700 nm) > T7 (460 nm);乾重T13 > T6 > T1 > T7 > T4。翠容鮮重T13 > T6 > T7;乾重T13 > T7 > T2 (445 + 680 + 700 nm)。大將鮮重T13 > T1 > T6 > T2 > T7;乾重T13 > T6 > T2 > T1 > T7。T13所屬LED燈管具強450 nm波峰、540-600 nm間有高原連續波,600 nm以上連續波的強度逐漸降低。對所研究三種萵苣可能選擇的LED燈光波組合有T1、T2、T4、T6、及T7,不同波長組合之LED燈與萵苣生理表現有關,且隨栽培種、調查天數不同也有所變化。在單色光的部分,以波長665 nm之紅光 (T9) 照射萵苣,於移植初期會使植株重量增加,也降低了植體內亞硝酸態氮之累積,但於生長後期會降低植體中氮含量,且植株外觀不佳,有葉片小、捲曲等情形,此結果也於紅光組合 (T10,680 + 700 nm) 中所見;以波長445 nm之藍光 (T6) 照射萵苣,除葉片SPAD測值增加外,也提高了萵苣重量,且與紅光 (T9) 處理相比葉片發育較正常。養液測定的部分,於移植初期,多數處理之養液pH降低,爾後變化較不規律;而EC值隨生長天數增加而降低。綜合以上結果,以藍光對萵苣的生長較紅光重要,而T13之LED不僅有強藍光且有綠光區。T1、T6、T13除能降低生長初期植體中之亞硝酸鹽,也能提高作物之元素含量。研究結果也顯示對氮需求参個栽培種相似,對磷、鉀、鈣、鎂則紅翠低於其它兩栽培種,而鐵及銅需求以紅翠高於其它兩栽培種。
Lettuce (Lactuca sativa L.) is one of the high commercial agriculture products world-wide, which has a lot of cultivars having different morphology and color. To avoid the crop yield or quality affected by the environment, and reduce the required labor, many scientists are dedicated to develop technologies for cultivating crops indoor by using automatic control equipments with nutrient solution and/or constant temperature and humidity systems. The aims of this study were focus on whether the light wavelength and the nutrient requirements for different cultivars of lettuces should be adjusted. In this experiment, three lettuce cultivars were cultivated in the non-closed basement with LED lamps and static hydroponic system. There were 13 groups of lamps used for different treatments, including 11 groups which were made of different wavelengths of LED lights (T1-T11) having single wavelength of combination of red (665、680、700 nm), blue (445、450、460 nm) and green (516 nm) wavelengths, the fluorescent lamp (T12), and the commercialized plant lamp (T13) which has strongest wavelength at 450 nm, continuing wavelength plateu around 540-600 nm, and a continuing decreasing strength wavelength above 600 nm were used as references. This study surveyed the horticultural characteristics of hydroponic lettuces and the pH and EC value of the nutrient solution at 10, 20, and 30 days after seedlings transplanting. Results showed that the fresh and dry weights of the three cultivars of the T13 LED were the highest then the relative production of the following treatments to T13 treatment were not consistent among cultivars. The descending order for the red rapid cultivar in fresh weight was T13 > T1 (445 + 665 nm) > T6 (445 nm) > T4 (460 + 680 + 700 nm) > T7 (460 nm) ; in dry weight was T13 > T6 > T1 > T7 > T4. The fresh weight for the Olivia green was T13 > T6 > T7 ; dry weight was T13 > T7 > T2. The fresh weight for the grand rapid was T13 > T1 > T6 > T2 > T7 ; dry weight wasT13 > T6 > T2 > T1 > T7。T13 LED lamp has a strong 450 nm peak, a high plateau around 540-600 nm, and relative strength was decreasing as wavelength higher than 600 nm. Relative high production LED lamps for lettuce production were T1, T2, T4, T6, and T7 with a consistency character is the blue wavelength. The red light with the wavelength of 665 nm (T9) and 680 + 700nm (T10) seems can reduce nitrite concentration in the plant, but their leaves were obviously smaller and curly. The blue light with wavelength of 445nm improved the SPAD value and the fresh weight. The fluorescent lamp (T12) and green light (T8) with wavelength of 516 nm were inhibited the plant growth. Results also showed that the nitrogen requirement among these three cultivars were similar, the P, K, Ca, and Mg requirements for red rapid cultivar was lower than those of others, while the Fe and Cu requirements for the red rapid cultivar was higher than those of the others.
URI: http://hdl.handle.net/11455/96232
文章公開時間: 2020-08-18
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.