Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96233
標題: Characteristics of Pseudomonas guguanensis sp. nov. and its electrochemical activity
新穎性菌種Pseudomonas guguanensis特性分析與其電化學活性之研究
作者: You-Cheng Liu
劉祐誠
關鍵字: 假單胞菌
網版印刷電極
電化學活性
燃料電池
Pseudomonas sp.
screen-printed electrode
electrochemical activity
fuel cell
引用: 連加雯. 2006. 網版印刷碳電極的活化及其電分析化學的應用. 碩士論文, 國立中興大學, 臺灣. 劉祐誠. 2010. 絕對厭氧異化性鐵還原微生物新種特性之研究. 碩士論文, 國立中興大學. Ait Tayeb, L., E. Ageron, F. Grimont, and P.A.D. Grimont. 2005. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Research in Microbiology 156: 763-773. Boichenko, V.A., J.M. Wang, J. Antón, J.K. Lanyi, and S.P. Balashov. 2006. Functions of carotenoids in xanthorhodopsin and archaerhodopsin, from action spectra of photoinhibition of cell respiration. BBA-Bioenergetics 1757: 1649-1656. Bond, D.R., D.E. Holmes, L.M. Tender, and D.R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 295: 483-485. Bond, D.R., and D.R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microb. 69: 1548-1555. Brosius, J., M.L. Palmer, P.J. Kennedy, and H.F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 4801-4805. Brown, A.P., and F.C. Anson. 1977. Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Anal. Chem. 49: 1589-1595. Chen, Y.-B., J.P. Zehr, and M. Mellon. 1996. Growth and nitrogen fixation of the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. IMS 101 in defined media: evidence for a circadian rhythm. J. Phycol. 32: 916-923. Cho, Y.K., T.J. Donohue, I. Tejedor, M.A. Anderson, K.D. McMahon, and D.R. Noguera. 2008. Development of a solar-powered microbial fuel cell. J. Appl. Microbiol. 104: 640-650. Collins, M.D. 1985. Analysis of isoprenoid quinones. Method. Microbiol. 18: 329-366. Colwell, R.R. 1965. Proposal of a neotype, ATCC 14216, for Pseudomonas aeruginosa (Schroeter 1872) Migula 1900 and request for an opinion1. Int. J. Syst. Evol. Micr. 15: 87-96. Dees, S.B., and C.W. Moss. 1975. Cellular fatty acids of Alcaligenes and Pseudomonas species isolated from clinical specimens. J. Clin. Microbiol. 1: 414-419. Edwards, U., T. Rogall, H. Blöcker, M. Emde, and E.C. Böttger. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 7843-7853. Embley, T.M., and R. Wait. 1994. Structural lipids of eubacteria. In: M. Goodfellow and A. G. O'Donnell, editors, Chemical Methods in Prokaryotic Systematics. Wiley, Chichester. p. 121-161. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the Bootstrap. Evolution 39: 783-791. Fu, C.C., C.H. Su, T.C. Hung, C.H. Hsieh, D. Suryani, and W.T. Wu. 2009. Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis. Bioresour. Technol. 100: 4183-4186. Gibello, A., A.I. Vela, M. Martín, G. Mengs, P.Z. Alonso, C. Garbi, and J.F. Fernández-Garayzábal. 2011. Pseudomonas composti sp. nov., isolated from compost samples. Int. J. Syst. Evol. Micr. 61: 2962-2966. Gorby, Y.A., S. Yanina, J.S. McLean, K.M. Rosso, D. Moyles, A. Dohnalkova, T.J. Beveridge, I.S. Chang, B.H. Kim, K.S. Kim, D.E. Culley, S.B. Reed, M.F. Romine, D.A. Saffarini, E.A. Hill, L. Shi, D.A. Elias, D.W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K.H. Nealson, and J.K. Fredrickson. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 103: 11358-11363. Hameed, A., H.-W. Pi, S.-Y. Lin, W.-A. Lai, L.-S. Young, Y.-C. Liu, F.-T. Shen, and C.-C. Young. 2016. Direct electrochemical sensing of phenazine-1-carboxylic acid secreted by Pseudomonas chlororaphis subsp. aureofaciens BCRC 11057T using disposable screen-printed carbon electrode. Electroanal. 28: 846-853. He, Z., J. Kan, F. Mansfeld, L.T. Angenent, and K.H. Nealson. 2009. Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ. Sci. Technol. 43: 1648-1654. Hirota, K., K. Yamahira, K. Nakajima, Y. Nodasaka, H. Okuyama, and I. Yumoto. 2011. Pseudomonas toyotomiensis sp. nov., a psychrotolerant facultative alkaliphile that utilizes hydrocarbons. Int. J. Syst. Evol. Micr. 61: 1842-1848. Hovanec, T.A., and E.F. DeLong. 1996. Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria. Appl. Environ. Microb. 62: 2888-2896. Hungate, R.E. 1969. A roll tube method for cultivation of strict anaerobes. In: J. R. Norris and D. W. Ribbons, editors, Method. Microbiol. Academic Press Inc., New York. p. 117-132. IEA. 2016. Key world energy stastics. International Energy Agency, Paris, France. IEA. 2016. World Energy Outlook 2016. International Energy Agency, Paris, France. Ieropoulos, I.A., J. Greenman, C. Melhuish, and J. Hart. 2005. Comparative study of three types of microbial fuel cell. Enzyme Microb. Tech. 37: 238-245. Kaku, N., N. Yonezawa, Y. Kodama, and K. Watanabe. 2008. Plant/microbe cooperation for electricity generation in a rice paddy field. Appl. Microniol. Biot. 79: 43-49. Kämpfer, P., and R.M. Kroppenstedt. 1996. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can. J. Microbiol. 42: 989-1005. Kissinger, P.T., and W.R. Heineman. 1983. Cyclic voltammetry. J. Chem. Educ. 60: 702-706. Komagata, K., and K.-I. Suzuki. 1987. Lipid and cell-wall analysis in bacterial systematics. Method. Microbiol. 19: 1-207. Lee, C.-Y., K.-L. Ho, D.-J. Lee, A. Su, and J.-S. Chang. 2012. Electricity harvest from nitrate/sulfide-containing wastewaters using microbial fuel cell with autotrophic denitrifier, Pseudomonas sp. C27. Int. J. Hydrogen Energ. 37: 15827-15832. Lee, H.S., P. Parameswaran, A. Kato-Marcus, C.I. Torres, and B.E. Rittmann. 2008. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res. 42: 1501-1510. Liu, H., R. Ramnarayanan, and B.E. Logan. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38: 2281-2285. Liu, Y.-C., L.-S. Young, S.-Y. Lin, A. Hameed, Y.-H. Hsu, W.-A. Lai, F.-T. Shen, and C.-C. Young. 2013. Pseudomonas guguanensis sp. nov., a Gammaproteobacteria isolated from Guguan hot spring in Taiwan. Int. J. Syst. Evol. Micr. Lovley, D.R. 2006. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4: 497-508. Lovley, D.R. 2006. Microbial energizers: fuel cells that keep on going. Microbe 1(7): 323-329. Lovley, D.R., D.E. Holmes, and K.P. Nevin. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Advances in Microbial Physiology 49: 219-286. Lovley, D.R., and E.J.P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microb. 51: 683-689. Lovley, D.R., and E.J.P. Phillips. 1988. Novel mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Appl. Environ. Microb. 54: 1472-1480. Mason, D.J., S. Shanmuganathan, F.C. Mortimer, and V.A. Gant. 1998. A fluorescent gram stain for flow cytometry and epifluorescence microscopy. Appl. Environ. Microb. 64: 2681-2685. Mesbah, M., and W.B. Whitman. 1989. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J. Chromatogr. A 479: 297-306. Minnikin, D.E., A.G. O'Donnell, M. Goodfellow, G. Alderson, M. Athalye, A. Schaal, and J.H. Parlett. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Meth. 2: 233-241. Moore, G.R., G.W. Pettigrew, R.C. Pitt, and R.J.P. Williams. 1980. pH dependence of the redox potential of Pseudomonas aeruginosa cytochrome c-551. BBA-Bioenergetics 590: 261-271. Morisaki, H., M. Sugimoto, and H. Shiraishi. 2000. Attachment of bacterial cells to carbon electrodes. Bioelectroch. 51: 21-25. Nishio, K., K. Hashimoto, and K. Watanabe. 2010. Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor. Appl. Microniol. Biot. 86: 957-964. Osteryoung, J.G., and R.A. Osteryoung. 1985. Square wave voltammetry. Anal. Chem. 57: 101A-110A. Pascual, J., T. Lucena, M.A. Ruvira, A. Giordano, A. Gambacorta, E. Garay, D.R. Arahal, M.J. Pujalte, and M.C. Macián. 2012. Pseudomonas litoralis sp. nov., isolated from Mediterranean seawater. Int. J. Syst. Evol. Micr. 62: 438-444. Pérez-Lombard, L., J. Ortiz, and C. Pout. 2008. A review on buildings energy consumption information. Energ. Buildings 40: 394-398. Prasad, K.S., A.B. Arun, P.D. Rekha, C.C. Young, J.L. Chang, and J.M. Zen. 2009. A microbial sensor based on direct electron transfer at Shewanella Sp. drop-coated screen-printed carbon electrodes. Electroanal. 21: 1646-1650. Rabaey, K., N. Boon, M. Hofte, and W. Verstraete. 2005. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39: 3401-3408. Rabaey, K., G. Lissens, S.D. Siciliano, and W. Verstraete. 2003. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25: 1531-1535. Rabaey, K., and W. Verstraete. 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 23: 291-298. Reguera, G., K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen, and D.R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature. 435: 1098-1101. Rogers, N.K., G.R. Moore, and M.J.E. Sternberg. 1985. Electrostatic interactions in globular proteins: Calculation of the pH dependence of the redox potential of cytochrome c551. J. Mol. Biol. 182: 613-616. Rosenbaum, M., U. Schroder, and F. Scholz. 2005. In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environ. Sci. Technol. 39: 6328-6333. Saha, R., C. Spröer, B. Beck, and S. Bagley. 2010. Pseudomonas oleovorans subsp. lubricantis subsp. nov., and Reclassification of Pseudomonas pseudoalcaligenes ATCC 17440T as Later Synonym of Pseudomonas oleovorans ATCC 8062T. Curr. Microbiol. 60: 294-300. Sambrook, J., and D.W. Russell. 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory, New York. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. Shen, F.T., and C.C. Young. 2005. Rapid detection and identification of the metabolically diverse genus Gordonia by 16S rRNA-gene-targeted genus-specific primers. FEMS Microbiol. Lett. 250: 221-227. Solomon, S., G.-K. Plattner, R. Knutti, and P. Friedlingstein. 2009. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 106: 1704-1709. Strik, D.P., H.V. Hamelers, and C.J. Buisman. 2010. Solar energy powered microbial fuel cell with a reversible bioelectrode. Environ. Sci. Technol. 44: 532-537. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. Tang, X., K. Guo, H. Li, Z. Du, and J. Tian. 2011. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour. Technol. 102: 3558-3560. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. Tindall, B.J., R. Rosselló-Móra, H.J. Busse, W. Ludwig, and P. Kämpfer. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Micr. 60: 249-266. Uchino, M., Y. Kosako, T. Uchimura, and K. Komagata. 2000. Emendation of Pseudomonas straminea Iizuka and Komagata 1963. Int. J. Syst. Evol. Micr. 50: 1513-1519. USPTO. 2017. Cooperative patent classification system. Alexandria, VA, USA. Wallace, D.M. 1987. Large- and small-scale phenol extractions. Method Enzymol. 152: 33-41. Wang, Q., G.M. Garrity, J.M. Tiedje, and J.R. Cole. 2007. Naïve Bayesian Classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73: 5261-5267. WIPO. 2017. International Patent Classification (IPC). Geneva, Switzerland. Xiao, Y.-P., W. Hui, Q. Wang, S.W. Roh, X.-Q. Shi, J.-H. Shi, and Z.-X. Quan. 2009. Pseudomonas caeni sp. nov., a denitrifying bacterium isolated from the sludge of an anaerobic ammonium-oxidizing bioreactor. Int. J. Syst. Evol. Micr. 59: 2594-2598. Xing, D., Y. Zuo, S. Cheng, J.M. Regan, and B.E. Logan. 2008. Electricity generation by Rhodopseudomonas palustris DX-1. Environ. Sci. Technol. 42: 4146-4151. Yamamoto, S., and S. Harayama. 1995. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microb. 61: 1104-1109. Yang, T.-H., C.-L. Hung, J.-H. Ke, and J.-M. Zen. 2008. An electrochemically preanodized screen-printed carbon electrode for achieving direct electron transfer to glucose oxidase. Electochem. Commun. 10: 1094-1097. Yoon, S.-H., S.-M. Ha, S. Kwon, J. Lim, Y. Kim, H. Seo, and J. Chun. 2016. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Micr. Yumoto, I., K. Yamazaki, M. Hishinuma, Y. Nodasaka, A. Suemori, K. Nakajima, N. Inoue, and K. Kawasaki. 2001. Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int. J. Syst. Evol. Micr. 51: 349-355. Zehnder, A.J.B. 1988. Biology of anaerobic microoranismsWiley, New York. Zhang, T., S.M. Gannon, K.P. Nevin, A.E. Franks, and D.R. Lovley. 2010. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ. Microbiol. 12: 1011-1020. Zhao, J., Y. Fang, T.D. Scheibe, D.R. Lovley, and R. Mahadevan. 2010. Modeling and sensitivity analysis of electron capacitance for Geobacter in sedimentary environments. J. Contam. Hydrol. 112: 30-44.
摘要: 現代社會能源使用主要依賴電能的型式,在全球能源需求持續增加的情況下,開發可再生之能源刻不容緩。微生物燃料電池為近年來重要之再生能源研究,微生物可利用多種碳氫化合物或是汙水中其他較複雜的基質作為其燃料來源,在能源安全與環境保護上有重大的貢獻。本研究由溫泉水、淺海沙土與水田底泥分離出45株分離株,Firmicutes 佔36%、Proteobacteria 佔61%、Actinobacteria 佔2%。其中溫泉水分離之 G9A 經鑑定後為新穎性菌種,命名為Pseudomonas guguanensis為好氧、桿狀、具有單一鞭毛之革蘭氏陰性菌,寄存代號為 BCRC 80438T=JCM 18416T。利用電化學偵測方法,將網版印刷電極浸入以pH 6.8, 0.1M PBS緩衝菌液,給予0.4V電壓持續600秒以進行電極表面之修飾,45株分離株中有8株具有不同的電化學反應,其中G9A分別在 0.2V與0.3V各多了一個還原與氧化波峰,顯示菌種表面具有可與電極作用,且重覆氧化還原之物質。利用微分脈衝伏安法與方波伏安法偵測G9A之氧化電流訊號,由 -1.16 A大幅提升至 -15.5 A。顯示 Pseudomonas guguanensis G9A 很可能具有發展為微生物燃料電池之潛力。本研究利用雙電極槽燃料電池系統,以 5mM 醋酸鈉為碳源,石墨紙 (50 cm2) 為工作電極,測試 Pseudomonas guguanensis G9A 之產電能力,在有穩定之碳源情況下,可維持46.9~49.8 mA/m2之電流密度,電功率最大為 0.03675 mW (7.35 mW/m2)。
Electricity is the most popular energy type in modern society. Under the condition that the global energy demand continues to raise, the development of renewable energy has demanded immediate attention. Microbial fuel cells are an important part of renewable energy research in recent years. Microorganisms can ultilize various hydrocarbons or other complex substrates in sewage as their carbon sources and produce electricity in the fuel cell system. Therefore, microorganisms have played a role in energy security and environmental protection. In this study, 45 isolates were isolated from hot spring water, shallow sand and paddy field of these 45 isolates, 36% of them were Firmicutes, 61% of them were Proteobacteria and 2% of them were Actinobacteria. The strain G9A isolated from the hot spring water was identified as a novel species named Pseudomonas guguanensis. It's an aerobic, rod-shaped, Gram-negative bacteria with single flagellum, and has deposited at the Bioresource Collection and Research Center, Taiwan (BCRC 80438T = JCM 18416T). For electrochemical detection, the screen-printed electrode (SPE) was immersed in pH 6.8, 0.1 M PBS buffered bacteria solution, and a 0.4V voltage was given for 600 seconds to carry out the electrode surface modification. Eight strains showed electrochemical reactions. G9A had new reduction and oxidation peak at 0.2V and 0.3V, suggesting that the surface of G9A contains redox materials. In differential pulse voltammetry and square wave voltammetry experiment, the oxidation current signal of G9A was significantly increased from -1.16 A to -15.5 A. Suggesting that Pseudomonas guguanensis G9A has the potential to develop microbial fuel cells. The power generation capacity of Pseudomonas guguanensis G9A was measured in dual-chamber fuel cell system by using 5mM sodium acetate as the carbon source and graphite paper (50 cm2) as the working electrode. Power generation was stable under continuous carbon source supply. The current density ranged from 46.9 to 49.8 mA/m2 and the maximum power was 0.03675 mW (7.35 mW/m2).
URI: http://hdl.handle.net/11455/96233
文章公開時間: 10000-01-01
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.