Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96235
標題: Effects of carbonized soils as an amendment on Cd bioavailability in a contaminated soil.
炭化土壤之添加對鎘污染土壤生物有效性的影響
作者: Yung-Wen Ko
柯詠紋
關鍵字: 炭化

生物有效性
連續萃取
carbonization
Cadmium(Cd)
bioavailability
continuous extraction
引用: 李炳璋。2013。農業廢棄物資源化趨勢簡訊。行政院農委會農業生技產業資訊網。 柯鴻慶。2004。以植物萃取法處理銅鉛鎘污染之土壤。碩士論文,嘉南藥理科技大學環境工程與科學所。 行政院農委會。農業廢棄物資訊。行政院農委會資料查詢網。http://www.coa.gov.tw/ws.php?id=8 行政院環境保護署。2001。土壤污染管制標準。90.11.21環署水字第0073684號公告。 行政院環境保護署。2003。土壤重金屬檢測方法-王水消化法。NIEA S321.63B。 行政院環境保護署土壤及地下水污染整治調查基金管理會。2016。全國農地重金屬污染潛勢調查。 許健輝。2010。浸水環境下磷酸鹽及碳酸鹽對污染土壤鎘釋放及物種轉變之影響。碩士論文,國立中興大學。 黃煥彰。2009。鎘米的故事。財團法人台南市社區大學研究發展學會,環境行動小組。黃煥彰老師文章-第13章。 徐聖惠。2010。探討浸水環境下添加黑炭對於污染土壤重金屬移動性之影響。碩士論文,國立中興大學。 陳楷岳。2012。不同炭化溫度導致土壤組成的變化及其對Cr(VI)轉移的影響。碩士論文,國立中興大學。 陳建銘。2010。重金屬銅鉻鎳在土壤中之型態分佈及淋洗去除效率。碩士論文,朝陽科技大學環境工程與管理所。 陳尊賢。2003。受重金屬污染農地土壤之整治技術與相關問題分析。台灣土壤及地下水環境環境保護協會簡訊。9: 2-9。 陳盈伊。2010。土壤中重金屬在植生復育過程中濃度變化及型態轉換。碩士論文,朝陽科技大學環境工程與管理所。 張容蓉。2006。炭化稻稈及椰殼之結構鑑定與其對2-氯酚之吸附行為。碩士論文,國立中興大學。 蔡秉泓。2010。探討鎘污染土壤中添加不同土壤改良劑對於向日葵生長情形之影響。碩士論文,國立屏東科技大學環境工程與科學所。 蔡呈奇、陳尊賢、黃政恆。2008。陽明山國家公園全區土壤分析調查報告。國科會,PG9703-0218。 巫宗南。1990。陽明山國家公園之地形分類及其成因。碩士論文,國立臺灣大學地理學研究所。 吳正宗。2012。土壤與植體分析技術。第163-166頁。 衛生福利部食品藥物管理署。2013。食米重金屬限量標準。102.08.20衛署食字第1021350146號公告。 王亮瑩。2012。添加稻稈生質炭對土壤固定Cr(VI)的作用。碩士論文,國立中興大學。 王一雄。1997。土壤環境污染與農藥。第232-250頁。 王文祥。1991。臺灣北部大屯火山群之火山地質及核分裂飛跡定年研究。碩士論文,國立臺灣大學地質學研究所。 Agee, J.K. 1993. Fire Ecology of Pacific Northwest Forests, Island Press, Washington, DC. Ainsworth, C.C., J.L., Pilon, P.L., Gassman, and W.G., Van Der Sluys. 1994. Cobalt, cadmium, and lead sorption to hydrous iron oxide: residence time effect. Soil Sci. Soc. Am. J. 58:1615-1623. Baldock, J.A., and R.J. Smernik. 2002. Chemical composition and bioavailability of thermally, altered Pinusresinosa (Red Pine) wood. Geochem. 33:1093–1109. Base, A.U., and P.R. Bloom. 1989. Disffuse reflectance and transmission Fourier transform infrared (DRIFT) spectroscopy of humic acid fulvic acids. Soil Sci. Soc. AM. J. 53:695-700. Benjamin, M.M., and J.O. Leckie. 1980. Adsorption of metals at oxide surfaces: Effects of the concentrations of adsorbate and competing metals. In Contaminants and Sediments, Volume 2, Analysis, Chemistry, Biology. R.A. Baker (ed.), Ann Arbor Science Publishers, Ann Arbor, MI. Bird, M.I, C. Moyo, E.M. Veenedaal, J. Lloyd, and P. Frost. 1999. Stability of elemental carbon in a savanna soil. Glob. Biogeochem. Cycles. 13:923–932. Bolan, N.S., R. Naidu, M.A.R. Khan, R.W. Tillman, and J.K. Syres. 1999. The effects of anion sorption on sorption and leaching of cadmium. Aust. J. Soil Res. 37:445-460. Cameron, R.E. 1992.Guide to site and soil description for hazardous waste site characterization, In E.P. Agency. Vol. 1:Metal. EPA/600/4-91/029. Chang, A.C., A.L. Page, J.E. Waraeke, M.R. Resketo, and T.E. Jone. 1983. Accumulation of cadmium and zinc in barley grown on sludge-treated soil. J. Environ. Qual. 12:391-397. Chen, K.Y., J.C. Liu, P.N. Ching, S.L. Wang, W.H. Kuan, Y.M. Tzou, Y. Deng, K.J. Tseng, C.C. Chen, and M.K. Wang. 2012. Chromate removal as influenced by the structural changes of soil components upon carbonization at different temperatures. Enviro. Pollu. 162:151-158. Chen, X., X.H. Xia, X.L. Wang, J.P. Qiao, and H.T. Chen. 2011. A comparative study on sorption of perfluoroocatne sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere. 83:1313–1319. Chen, Z.S., T.C. Tsou, V.B. Asio, and C.C. Tsai. 2001. Genesis of Inceptisols on a volcanic landscape in Taiwan. Soil Sci. 166:255-266. Chiou, C.T. 2002. Partition and adsorption of organic contaminants in environmental systems, Wiley-Interscience, Hoboken, New Jersey. Choromanska, U., and T.H. DeLuca. 2001. Microbial activity and nitrogen mineralization in forest mineral soils following heating: Evaluation of post-fi re effects. Soil Biol. Biochem. 34:263–271. Chun, Y., G. Sheng, and S.A. Boyd. 2003. Sorptive characteristics of tetraalkylammonium-exchanged smectite clays. Clay Clay Min. 51:415-450. Dean, J.A. 1992. Lange's Handbook of Chemistry, 14th Ed. McGraw-Hill, New York. Evangelou, M.W.H., H. Daghan, and A. Schaeffer. 2004. The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 57:207-213. Fernandez, I., A. Cabaneiro, and S.J. Gonzalez-Prieto. 2004. Use of 13C to monitor soil organic matter transformations caused by a simulated forest fire. Rapid Commun. Mass Spectrom. 18:435–442. Gee, G.W., R.G. McLaren, A.H.C. Robert, and L.M. Condron. 1998. Sorption and desorption of cadmium from some New Zealand soils: effect of pH and contact time. Aust. J. Soil Res. 36(2):199-216. Gil, C., R. Boluda, and J. Ramos. 2004. Determination and evaluation of cadmium, leadand nickel in greenhouse soils of Almeria. Chemosphere. 55: 1027–1034. Gonza'lez-Pe'rez, J., F.J. Gonza'lez-Vila., G. Almendros, and H. Knicker. 2004. The effect of fire on soil organic matter- a review. Environ. Int. 30:855-870. Guerrero, C., J. Mataix-Solera, I. Gomez, F. Garcia-Orenes, and M.M. Jordan. 2005. Microbial recolonization and chemical changes in a soil heated at different temperatures. Int. J. Wildland-fire. 14:385–400. Hammes, K., R.J. Smernik, J.O. Skjemstad, and M.W.I. Schmidt. 2008. Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. Appl. Geochem. 23:2113-2122. Harvey, O.R., B.E. Herbert, R.D. Rhue, and L. Kuo. 2011. Metal Interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environ. Sci. Technol. 45: 5550–5556. Hong, C.O., D.K. Lee, and P.J. Kim. 2008. Feasibility of phosphate fertilizer to immobilize cadmium in a field. Chemosphere 70:2009-2015. Hoyt, K.S., and A. E. Gerhart. 2004. The San Diego County wildfires: Perspectives of healthcare providers. Disaster Management & Response. 2:46-52. Hua, L., W. Wu, Y. Liu, M.B. Mcbride, and Y. Chen. 2009. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ. Sci. Pollut. Res. 16: 1-9. Kabata-Pendias, A., and H. Pendias. 2001. Trace elements in soils and plants. Boca Raton: CRC press. Karayildirim, T., J. Yanil., and H. Bockhorn. 2006. Characterisation of products from pyrolysis of waste sludges. Fuel 85: 1498-1508. Karickhoff, S.W., D.S. Brown, and T.A. Scott. 1979. Sorption of hydrophobic pollutants on natural sediments.Water Res.13:241-248. Kaufman, A.J., J.M. Hayes, A.H. Knoll, and G.J.B. Germs. 1992. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. Precambrian Res.49: 301–327. Kleber, M., J. Rsner, C. Chenu, B. Glaser, H. Knicker, and R. Jahn. 2003. Prehistoric alteration of soil properties in a Central German chernozemic soil: In search of pedologic indicators for prehistoric activity. Soil Sci. 168:292–306. Knicker, H., F.J. González-Vila, O. Polvillo, J.A. González, and G. Almendros. 2005. Fire-induced transformation of C- and N-forms in different organic soil fractions from a dystric Cambisol under a Mediterranean pine forest (Pinuspinaster). Soil Biol. Biochem. 37:701–718. Krishnamurti, G.S.R., P.M. Huang, K.C.J. Van Rees, L.M. Kozak, and H.P.W. Rostad. 1995. A new soil test method for the determination of plant-available cadmium in soils. Commun. Soil Sci. Plant Anal. 26:2587-2867. Kuhlbusch, T.A.J., and P.J. Crutzen. 1995. Toward a global estimate of Black Carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Glob. Biogeochem. Cycles. 9:491–501. Kuhlbusch, T.A.J., and P.J. Crutzen. 1995. Toward a global estimate of Black Carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Glob. Biogeochem. Cycles. 9:491–501. Lair, G.J., M. Graf, F. Zehetner, and M.H. Gerzabek. 2008. Distribution of cadmium among geochemical fractions in floodplain soils of progressing development. Environ.Pollut. 156:207-214. Li, W., S. Zhang, and X. Q. Shan. 2007. Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption. Colloids and surfaces. 293:13-19. Liang, B., J. Lehmann, D. Colomon, J. Kinyangi, J. Grossman, B. O'Neill, J.O. Skjemstad, J. Thies, F.J. Luizao, J. Petersen, and E.G. Neves. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70: 1719-1730. Lombi, E., F.J. Zhao, S.J. Dunham, and S.P. McGrath. 2000. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol. Vol. 145:11-20. Lu, H., Z. Li, S. Fu, A. Méndez, G. Gascó, and J. Paz-Ferreiro. 2015. Effect of biochar in cadmium availability and soil biological activity in an Anthrosol following acid rain deposition and aging. Water Air Soil Pollut. 226, 164–174. Lu, K.P., Yang, X., Shen, J.J., Robinson, B., Huang, H.G., Liu, D., Bolan, N., Pei, J.C.,Wang, H.L., 2014. Effect of bamboo and rice straw biochars on thebioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric. Ecosyst.Environ. 191, 124–132. Luo, Y., Y.J. Jiao, X.R. Zhao, G.T. Li, L.X. Zhao, and H.B. Meng. 2014. Improvement to maize growth caused by Biochars derived from six feedstocks prepared at three different temperatures. Journal of Integrative Agriculture. 13(3): 533-540. Mckeague, J.A. 1967. An evaluation of 0.1M pyrophosphate and pyrophosphate- dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Can. J. Soil Sci. 47:95-99. Mckeague, J.A., and J.H. Day. 1966. Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46:13-22. McLean, E.O. 1982. Soil pH and lime requirement. p.119-224. In A. L. Page et. al. Methods of soil analysis. Part 2. 2nd ed. ASA and SSSA, Madison, WI. Meers, E., G.D. Laing, V. Unamuno, A. Ruttens, J Vangronsveld, F.M.G. Tack, and M.G. Verloo. 2007. Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma 141:247-259. Mehra, O.P., and M.L. Jackson. 1960. Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Miner. 7:317-327. Mohamed, I., G.S. Zhangc, Z.G. Lic, Y. Liuc, F. Chena, and K. Daid. 2015. Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecological Engineering. 84:67–76. Naidu, R., N.S., Bolan, R.S., Kookana, and K.G., Tiller. 1994. Ionic strength and pH effects on the sorption of cadmium and the surface charge of soils. Eur. J. Soil Sci. 45, 419-429. Namgay, T., B. Singh, and B.P. Singh. 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (ZeamaysL.). Aust. J. Soil Res.48:638–647. Nelson, D.W., and L.E. Sommers. 1996. Total carbon, organic carbon and organic matter. p. 961-1010. In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston and M.E. Summer(ed.) Methods of soil analysis, Part3. ASA and SSSA, Madison, WI, USA. Onyatta, J.O., and P.M. Huang. 2003. Kinetics of cadmium release from selected tropical soils from Kenya by low-molecular-weight-organic acids. Soil Sci. 168:234-252. Pagnanelli, F., A. Esposito, L. Toro, and F. Veglio. 2003. Metal speciation and pH effecton Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: langmuir-typeempirical model. Water Res. 37:627–633. Ponomarenko, E.V., and D.W. Anderson. 2001. Importance of charred organic matter in Black Chernozem soils of Saskatchewan. Can. J. Soil Sci. 81:285–297. Ramanathan, V., and G. Carmichael. 2008. Global and regional climate changes due to black carbon. Nat Geosci 1:221–227. Rauret, G., J.F. Lopez-Sanchez, and A. Sahuquillo. 1999. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1:57-61. Rhoades, J.D. 1982. Cation exchange capacity. Methods of soil analysis. Part II. 2nd edition. p.149-157. Richard, T.W., and W.P. Robert. 2007. Monitored natural attenuation of inorganic contaminants in ground water: Assessment for Non-Radionuclides including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium. Volume 2. page.1-3. Rumpel, C., M. Alexis, A. Chabbi, V. Chaplot, D. P. Rasse, C. Valentin, and A. Mariotti. 2006. Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma. 130:35–46. Rundel, P.W. 1983. Impact of fire on nutrient cycles in Mediterranean-type ecosystems with reference to chaparral. Mediterranean-type ecosystems: The role of nutrients; Springer-Verlag, New York, p.192-207. Sackett, S.S., and S.M. Haase. 1992. Measuring soil and tree temperature during prescribed fires with thermocouple probes; USDA Forest Service, General Technical Report PSW-131. Schmidt, M. W.I., and A.G. Noack. 2000. Black carbon in soils and sediment: analysis, distribution, implication, and current challenges. Global Biogeochem. Cycles 14:777-793. Schmidt, M.W.I., J.O. Skjemstad, E. Gehrt, and I. Kögel-Knabner. 1999. Charred organic carbon in German chernozemic soils. Eur. J. Soil Sci. 50:351–365. Schwarzenbach, R.P., P.M. Gschwend, and D.M. Imoben. 2003. Environmental Organic Chemistry. John Wiley and Sons, Hoboken, NJ. Shen, M.X., L.Z. Yang, Y.M. Yao, D.D. Wu, J.G. Wang, R.L. Guo, and S.Y. Yin. 2007. Long-term effects of fertilizer managements on crop yields and organic carbon storage of a typical rice-wheat agroecosystem of China. BiolFertil Soils. 44:187–200. Simard, A. 1991. Fire severity, changing scales, and how things hang together. Int. J. Wildland Fire. 1:23–34. Skjemstad, J.O., C.C. Reicosky, A.R. Wilts, and J.A. McGowan. 2002. Charcoal carbon in U.S. agricultural soils. Soil Sci. Soc. Am. J. 66: 1249–1255. Stevenson, F.J. 1994. Humus Chemistry: Genesis, Composition, Reactions, second ed, Wiley, New York. Tessier, A., P.G.C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:848-851. Thakur, S.K., N.K. Tomar, and S.B. Pandeya. 2006. Influence of phosphate on cadmium sorption by calcium carbonate. Geoderma. 130:240-249. Tingzong, G., R.D. DeLaune, and W.H. Patrick. 1997. The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environment International. 23:305-316. Vaccari, F.P., A. Maienza, F. Miglietta, S. Baronti, S.D. Lonardo, L. Giagnoni, A. Lagomarsino, A. Pozzi, E. Pusceddu, R. Ranieri, G. Valboa, and L. Genesio. 2015. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agriculture, Ecosystems and Environment. 207: 163-170. Wade, D. 2013. Fire intensity and fire severity: how hot is your fire and why is that important? Southern Fire Exchange.2013-4. Xu, D.Y., Y. Zhao, K. Sun, B. Gao, Z.Y. Wang, J. Jin, Z.Y. Zhang, S.F. Wang, Y. Yan, X.T. Liu, and F.C. Wu. 2014. Cadmium adsorption on plant and manure- derivedbiochar and biochar-amended sandy soils: impact of bulk and surfaceproperties. Chemosphere. 111: 320–326. Yang, K., L. Zhu, and B.S. Xing. 2006. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ. Sci. Technol. 40:1855–1861. Yang, Y.N., and G.Y. Sheng. 2003. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ. Sci. Technol. 37: 3635–3639. Yu, G., U.K. Saha, L.M. Kozak, and P.M. Huang. 2006. Kinetics of cadmium adsorption on aluminum precipitation products formed under the influence of tannate. Geochimica 51: 5134-5145. Zhang, R.H., Z.G. Li, X.D. Liu, B.C. Wang, G.L. Zhou, X.X. Huang, C.F. Lin, A.H. Wang, and M. Brooks. 2017. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar. Ecological Engineering. 98: 183-188.
摘要: 表面燃燒所產生的熱能會直接或間接地傳遞至表土中,而塑造出一個炭化的環境進而改變土壤的組成,如無機礦物與有機質的結構,當這些土壤組成受熱改變後,會影響進入土壤中的污染物之遷移及宿命。由於鎘為台灣地區常見的重金屬污染物,且容易被植物所吸收利用,並透過食物鏈傳輸至人體中,對人體造成危害,故本研究將在鎘污染之土壤中添加炭化土壤,模擬表面燃燒造成土壤的炭化反應對於蕹菜鎘的生物有效性之影響。本試驗採集陽明山土壤進行不同溫度(25、200、400、600°C)的炭化,炭化後利用光譜分析觀察有機物的化學組成,再將炭化土壤以四種比例(0、1、3、5 %)添加至不同鎘濃度(0、1、3、7 mg kg-1)處理的土壤中,種植蕹菜一個月後,觀察植體生長情形、植體中吸收的鎘、種植前後土壤中的鎘含量與鎘物種的轉變,來探討富含有機質炭化土壤的添加對於鎘污染土壤生物有效性的影響。 經由傅立葉紅外線光譜分析下發現,經炭化處理有機質中脂肪族及含氧官能基如羧基會逐漸減弱,而相對提升芳香性的比例,表示炭化超過400°C,土壤其有機組成會逐漸轉變為非極性的芳香性碳結構,因此,對於鎘的吸附能力以未經炭化處理具較高含氧官能基的陽明山土為最佳,且隨著炭化溫度的增加對鎘的吸附則有逐漸下降的趨勢。不同濃度鎘處理、炭化溫度及添加比例,對於蕹菜的植株高度與地下部總長度並沒有明顯的影響,當添加無炭化的陽明山土壤與200°C炭化處理的土壤,所種植蕹菜乾重大部份皆比400°C及600°C炭化處理土壤的添加來得顯著,此因陽明山土壤中有機質含量高,且在炭化溫度為200°C時因炭化不完全,表面的官能基如羧基、氨基等含量較高,可供植體吸收利用。而無論是地下部或地上部,在植體中鎘的含量,均隨著鎘添加濃度的增加而上升,且地下部的總累積鎘量高於地上部。盆栽試驗前後土壤鎘分析結果顯示,在較低鎘濃度(1 mg kg-1)的處理相較於種植前,土壤中鎘含量因作物吸收而下降,但在較高鎘濃度(即3與7 mg kg-1)處理的土壤,土壤中鎘濃度變化差異並不顯著。連續萃取結果發現,當鎘添加量增加時,鎘主要分佈在可交換、碳酸鹽與鐵錳結合態上,由於分佈在容易被植體所吸收的交換態鎘量隨鎘添加濃度的增加有顯著的上升,故高濃度鎘的添加處理其植體吸收量亦隨之升高。而在添加未經炭化的陽明山土壤與炭化溫度200°C處理的炭化土壤時,其有機物質鍵結態皆有上升的趨勢,主要是由於陽明山土壤中富含相當多的有機物質,因此當未經炭化的土壤或炭化200°C後之土壤仍含有有機官能基,其會與重金屬產生錯合或鉗合,使得此型態的比例增加;而隨著炭化溫度的增加,其土壤中有機質及官能基含量會逐漸下降,因此,在較高炭化溫度土壤添加下,有機質結合態與控制組比較無明顯的上升。而添加未炭化與不同炭化溫度的炭化土壤時,會依所添加的比例增加,使碳酸鹽鍵結型態有上升的趨勢,此與土壤pH值因炭化土壤添加量的增加導致土壤pH的上升有關,其可以提高對於重金屬的吸附力,使鎘轉變成Cd(CO3)的形式產生沉澱,而固定在土壤中,不易被植物所吸收利用,因此,所添加炭化土壤的溫度與比例對於鎘污染土壤鎘的生物有效性皆會造成影響。
The surface fires will transfer directly or indirectly the heat to the soils, leading to the formations of a carbonized environment, and thus, the inorganic or organic compositions of soils may be changed, affecting the transformations and the fates of soil pollutants. Cadmium was one of the common heavy metal pollutants in the farmlands of Taiwan. It was easily delivered into human bodies through the food chain, causing a great hazard to human health. Therefore, the eliminations of Cd bioavailability in soils may decrease its potential toxicity to humans through the crop consumptions. In the study, the organic-enriched soil was collected from Yangminshan area and were carbonized at different temperatures (25、200、400、600°C). The carbonized Yangminshan soils were added into a Cd-contaminated soil (treated with Cd to obtain the final concentrations of 0, 1, 3, and 7 mg/kg, denoted as NCd, LCd, MCd, and HCd, respectively) with various ratios of 0, 1, 3, and 5%. The Ipomoea aquaticwas then grown in the Cd-contaminated soils for one month and the influences of Cd on plant growths, Cd uptakes, and the changes in Cd concentrations/species in soils were examined, and the alterations in the Cd bioavailability upon the additions of carbonized soils were also evaluated.   The FT-IR analyses of the carbonized soil samples found that the aliphatic and oxygen-containing functional groups, such as carboxylic groups,decreased gradually, accompanied with an increase in the non-polar aromatic groups while increasing the carbonized temperature up to 400°C. The pristine Yangmingshan soils exhibited the best adsorption capacity of Cd; however, the adsorption of Cd decreased with an increase in carbonized temperatures.It was found that the plant height and the length of the roots were slightly affected by the treatments of Cd and the additions of carbonized soils.The roots and dry weight of Ipomoea aquatic were significantly higher when the pristine and 200°C-carbonized Yangminshan soils were added into the Cd-contaminated soil as compared to that with the addition of 400°C and 600°C carbonized soils. The results may be due to the provisions of some nutrients, such as carboxyl and amino groups, from the organic matter of Yangmingshan soil, which was not affected strongly by the low temperature treatments.The Cd contents in the shoots and roots increased with an increase in Cd concentrations, and most of the Cd was accumulated in the roots. The results of pot experiments showed that Cd contents in the LCd soils decreased while the MCd and HCd treated soils remained unchanged after grown the Ipomoea aquatic. The results of sequential extractions showed that the Cd was mainly distributed in the exchangeable, carbonate, and Fe-Mn Oxides factions in Cd-contaminated soils.These Cd species exhibited high bioavailability that may lead to a significant increase in Cd uptake by plants when Cd concentrations in soils were increased. The additions of pristine Yangmingshanand 200°C carbonized soils could increase the proportions of organic bounded Cd because these soils enriched with organic functional groups.On the other hand, the carbonate bounded Cd increased when more carbonized soils or high temperature carbonized soils were added into the Cd-contaminated soils. An increase in soil pH values upon the addition of the carbonized soils may lead to the conversion of Cd species to CdCO3 precipitates, declining Cd uptake by plants. Accordingly,the addition of various ratios of carbonized soils treated with different temperatures would lead to the transformations in the species and bioavailability of Cd in the Cd-contaminated soils.
URI: http://hdl.handle.net/11455/96235
文章公開時間: 2020-08-02
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.