Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96236
標題: Effects of Sesbania roxburgii (Merr.) planting on soil physical properties and weeds growth
田菁(Sesbania roxburgii (Merr.))對土壤物理性質及雜草生長影響研究
作者: Yu-Shuan Huang
黃玉舜
關鍵字: 田菁
雜草生長
野莧
芒草
土壤溫度
穿刺阻力
sesbania
weed growth
amaranthus
miscanthus
soil temperature
penetration resistance
引用: 中央氣象局觀測資料查詢系統。2015。古坑自動觀測站九月報表。 http://e-service.cwb.gov.tw/HistoryDataQuery/MonthDataController.do?command=viewMain&station=C0K460&stname=%25E6%2596%2597%25E5%258D%2597&datepicker=2015-09 中央氣象局觀測資料查詢系統。2015。古坑自動觀測站十月報表。 http://e-service.cwb.gov.tw/HistoryDataQuery/MonthDataController.do?command=viewMain&station=C0K460&stname=%25E6%2596%2597%25E5%258D%2597&datepicker=2015-10 中華土壤肥料學會。1995。土壤分析手冊。第二版。 中華肥料學會。2011。作物施肥手冊。p. 97-98。第六版。國家圖書館。台北 行政院農業委員會農業藥物毒物試驗所。2010。農地雜草管理與除草劑安全 使用。P. 55-62。行政院農業委員會農業藥物毒物試驗所。台中。 安雨、馬永清、稅軍峰與鍾雯瑾。2013。栽培柳枝稷不同生長時期對伴生雜草生 物量及密度的影響。草地學報。21: 690-695。 吳昭慧、吳建銘與張汶肇。2010。果園草生栽培具發展潛力地被植物介紹。台南 區農業資訊。74: 1-7。 吳昭慧、吳建銘與張汶肇。2010。果園草生栽培管理。臺南區農業改良場技術專 刊。149: 3-9。 洪國欽。2006。紅外線機體溫度感測系統之研究。國立中興大學生物產業機電工 程學系碩士學位論文。p. 9-13。 連大進。1992。田菁對土壤改良功效與栽培法。台南區農業專訊。2: 4-6。 陳世雄與鄭混元。1990。台灣春作玉米低產之根系障礙 Ⅱ.土壤壓實及磷之 影響。農林學報。39: 167-174。 國立中興大學土壤學系。1975。雲林縣土壤調查報告。 曾國珍與林正錺。2009。增進台灣農地旱作生產力 Ⅱ.土壤內部排水、壓實問題 的診斷和改良。農林學報。58: 45-64。 黃煜誠。2013。研究根瘤菌對田菁吸收鹽份能力的影響。國立中興大學土壤環境 科學系碩士學位論文。 游繁結。1989。農業氣象學。國立中興大學教務處出版組。台中。 楊曉娟與李春儉。2008。機械壓實對土壤品質、作物生長、土壤生物及環境的影 響。中國農業科學。41: 2008-2015。 蔣永正與蔣幕琰。2000。有機栽培之雜草防治技術。永續農業。12: 35-42。 蔣永正。2011。除草劑毒性及環境安全性。中華民國雜草會刊。32: 122-126。 劉曜文。2003。土壤壓實對土壤穿透阻力及作物生長最小限制水分範圍的影響。 國立台灣大學農業化學系碩士學位論文。 羅喬中。2009。噴霧冷卻控制策略於聖誕紅葉面降溫之研究。國立中興大學生物 產業機電工程學系碩士學位論文。p. 4-51。 Abdollahi, L. and L.J. Munkholm. 2014. Tillage system and cover crop effects on soil quality:Ⅰ. Chemical, mechanical, and biological properties. Soil Sci. Soc. Am. J.. 78: 262-270. Abdollahi, L., L.J. Munkholm, and A. Garbout. 2014. Tillage system and cover crop effects on soil quality: Ⅱ. Pore characteristics. Soil Sci. Soc. Am. J.. 78: 271-279. Abu-Hamdeh, N.H.. 2000. Effect of tillage treatments on soil thermal conducting for same Jordanian clay loam and loam soils. Soil Till. Res.. 56: 145-151 Ansari, A.Q., and W.E. Loomis. 1959. Leaf temperatures. Jpn. J. Bot.. 46: 713-717. Ayers, P.D. and J.V. Perumpral. 1982. Moisture and density effect on cone index. T. ASAE.. 25, 5: 1169-1172. Barber, S.A., A.D. Mackay , R.O. Kuchenbuch, and P.B. Barraclough. 1988. Effects of soil temperature and water on maize root growth. Plant Soil. 111: 267-269. Barley, K.P.. 1962. The effects of mechanical stress on the growth of roots. J. Exp. Bot.. 13: 95-110. Bengough A.G., and C.E. Mullins. 1990. Mechanical impedance to root growth: A review of experimental techniques and root growth responses. J. Soil Sci.. 41: 341-358. Bingham, I.J., A.G. Bengough, and R.M. Rees. 2010. Soil compaction-N interactions in barley: root growth and tissue composition. Soil Till. Res.. 106: 241-246. Bowen, H.D.. 1981. Alleviating mechanical impedance. In: Taylor HM, Arkin GF (eds) Modifying the root environment to reduce crop stress. ASAE.. p. 21-57. St. Joseph. Bray, R.H., and L.T. Kurtz. 1945. Determination of toatal, organic and available forms phosphate in soil. Soil Sci.. 50, 39-45. Campbell, G.S.. 1977. An Introdution to Environmental Biophysics. Springer-Verlag. New York. Chen, G.H., and R.R. Weil. 2010. Penetration of cover crop roots through compacted soils. Plant Soil. 331: 31-43. Chen, G.H., and R.R. Weil. 2011. Root growth and yield of maize by soil compaction and cover crops. Soil Till. Res.. 117: 17-27. Clark, L.J., W.R. Whalley, and P.B. Barraclough. 2003. How do roots penetrate strongsoil?. Plant Soil. 255: 93-104. Cox, L.M., and L. Boersma. 1967. Transpiration as a function of soil temperature and soil water stress. Plant Physiol.. 42: 550-556. Dabney, S.M., J.A. Delgado, and D.W. Reeves. 2001. Using winter cover crops to improve soil and water quality. Soil Sci. Plant Anal.. 32: 1221-1250. Dean, J.E., and R.R Weil. 2009. Brassica cover crops for nitrogen retention in the mid-Atlantic coastal plain all rights reserved. J. Environ. Qual.. 38: 520-528. Dupuis, L., and C. Dumas. 1990. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive systems. Plant Physiol.. 94: 665-670 Devlin, R.. 1975. Plant Physiology. p. 600. New york, D. Van nostrand company. Doll, E.C., and R.E. Lucas. 1973. Testing soil for potassium, calcium and magnesium. p. 133-152. In L.M. Walsh and J.D. Beaton (ed.) Soil Testing and Plant Anaylysis. Soil Sci. Soc. Am. J.. Madison. WI. Eavis, B.W.. 1967. Mechanical impedance and root growth. Inst. Agric. Eng. Sympsilsoe. Paper No. 4/F/39. Eguchi, H., and M. Joutaki. 1986. Analysis of soil temperature effect on transpiration by leaf heat balance in cucumber, cucurbit and their grafted plants. Biotronics. 15: 45-54. Elkins, C.B.. 1985. Plant roots as tillage tools. In: International Conference on SoilDynamics. p. 519-523. Auburn. AL. Fuchs, M.. 1990. Canopy thermal infrared observation. Remote Sens. Rev.. 5: 323-333. Gates, D.M.. 1968. Transpiration and leaf temperature. Annu. Rev. Plant Physiol.. 19: 211-238. Gay, S.H., G. Louwagie, F. Sammeth, T. Ratinger, B. Marechal, P. Prosperi, E. Rusco, J. Terres, M. Van Der Velde, D. Baldock, C. Bowyer, T. Cooper, I. Fenn, N. Hagemann, K. Prager, N. Heyn, and J. Schuler. 2009. Final Report on the project 'sustainable agriculture and soil conservation'. Office for Official Publications of the European Communities. p. 150. EUR 23820 EN. Luxembourg Gregorich, E.G., C.F. Drury, and J.A. Baldock. 2001. Changes in soil carbon under long term maize in monoculture and legume-based rotation. Can. J. Soil Sci.. 81: 21-31. Heap, I. M. 1997. The occurrence of herbicide-resistant weeds worldwide. Pest. Sci..51: 235-234. Herrero, M.P., and R.R. Johnson. 1980. High temperature stress and pollen viability in maize. Crop Sci.. 20: 796-800. Hill, R.L.. 1990. Long term conventional and no till effects on selected soil physical properties. Soil Sci. Soc. Am. J.. 53: 1515-1519 Hillel, D.. 2004. Introduction to environmental soil physics. Elsevier Science. USA. Hsiao, T.C., W.G. Allaway, and L.Y. Evans. 1973. Action spectra for guard cell Rb+ uptake and stomatal opening in Vicia faba. Plant Physiol.. 51: 82-88. Intergovernmental Panel on Climate Change (IPCC). 2007. Intergovernmental Panel on Climate Change fourth assessment report: Climate change 2007. Synthesis Report. Konis, E.. 1949. The resistance of marquis plants to supramaximal temperatures. Ecology. 30: 425-429. Kristensen, H.J., and K. Thorup-Kristensen. 2004. Root growth and nitrate uptake of three different catch crops in deep soil layers. Soil Sci. Am. J.. 68: 529-537. Kuss, F.R., and A.R. Graefe. 1985. Effects of recreation trampling on natural area vegetation. J. Leisure Res.. 17: 165-183. Lipiec, J., and I. Hakansson. 2000.Influence of degree of compactness and matric water tension on some important plant growth factors. Soil Till. Res.. 53: 87-94. Lipiec, J., J. Arvidsson, and E. Murer. 2003. Review of modelling crop growth: movement of water and chemicals in relation to topsoil and subsoil compaction. Soil Till. Res.. 73: 1-29. Lipiec, J., and R. Hatano. 2003. Quantification of compaction effects on soil physical properties and crop growth. Geoderma. 116:107-136. Mann, C.C. 2008. Our good earth. Natl. Geogr.. http://ngm.nationalgeograhic.com/2008/09/soil/mann-text Martin, E.S., M.E. Donkin, and R.A. Stevens. 1983. Stomata. Edward Amold. London. Materechera, S.A., A.R. Dexter, and A.M. Alston. 1991. Penetration of very strong soils by seedling roots of different plant-species. Plant Soil. 135: 31-41. Mclean, E.O.. 1982. Soil pH and lime requirement. P.119-224. In A. L. Page et al. (ed.) Methods of soil anaylysis. Part 2, 2nd ed. ASA and SSSA. Madison. Wisconsin, USA. Misra, R.K., A.R. Dexter, and A.M. Alston. 1986. Maximum axial and radial growth pressures of plant roots. Plant Soil. 95: 315-326. Murphy, J., and J.P. Riley. 1962. A modified single solution method for determination of phosphate in natural water. Analyt. Chim. Acta. 27: 31-36. Nagarajah, S.. 1975. The relation between photosynthesis and stomatal resistance of each leaf surfacein cotton leaves. Physiol. Plant. 34: 62-66. National Agricultural Statistics Service (NASS). 2007. Agricultural Statistics. United States Government. Washington, D.C.. Noffsinger, T.L.. 1961. Leaf and air temperature under Hawaii conditions. Pac. ScI.. 40: 304-306. Obalum, S.W., and M.E. Obi. 2010. Physical properties of a sandy loam ultisol as affected by tillage-mulch management practices and cropping systems. Soil Till. Res.. 108: 30-36. Pallas, J.E., B.E. Michel. And D.G. Harris. 1967. Photosythesis, transpiration, leaf temperature, amd stomatal acitivity of cotton plants under varying water potentials. Plant Physiol.. 42: 76-88. Perumpral, J.V.. 1987. Cone penetrometer applications – a review. T. ASAE.. 30: 939-944. Place, G., D. Bowman, M. Burton, and T. Rutty. 2008. Root penetration through a high bulk density soil layer: Different response of a crop and weed species. Plant Soil. 307: 179-190. Rhodes, J.D.. 1982. Soluble salts. In A.L. Page et al. (ed.). Methods of soil analysis. Part 2. 2nd ed. ASA and SSSA. p. 167-180. Madison, WI. Rosolem, C.A., J.S.S. Foloni, and C.S. Tiritan. 2002. Root growth and nutrientaccumulation in cover crops as affected by soil compaction. Soil Till. Res.. 65: 109-115. Sasaki, K., and T. Itagi. 1989. Effect of root cooling treatment of nutrient solution on growth and yield of tomato, cucumber and melon. Environ. Control Biol. 27: 89- 95. Schoper, J.B., R.J. Lambert, B.L. Vasilas, and M.E. Westgate. 1987. Plant factors controlling seed set in maize. Plant Physiol.. 83: 121-125. Shaw, R.H.. 1956. Leaf and air temperatures under freezing conditions. Plant Physiol.. 29: 102-104. Smith, A.M.. 1909. On the internal temperature of leaves in tropical insolation. Annals Royal Botanical Garden. 4: 229-298. Sohne, W.. 1958. Fundamentals of pressure distribution and compaction under tractor tires. Agric. Eng.. 39: 276-281. Soil survey staff. 1999. Soil Taxonomy. Second edition. United states department of agriculture Natural resources conservation service. USA. Stoller, D.M.. 1966. Spectral distribution of solar radiation at the earth's s surface. Science. 3710: 523-529. Tahir, I. S. A., N. Nakata , T. Yamaguchi , J. Nakano ,and A.M. Ali. 2008. Influence of high shoot and root-zone temperatures on growth of three wheat genotypes during early vegetative stages. J. Agron. Crop Sci.. 194: 141-151. Taylor, H.M., G.M. Roberson, and J.J. Parker. 1966. Soil Strength-root penetration relations for medium to textured soil materials. Soil Sci.. 102: 18-22. Taylor, H.M., and L.F. Ratcliff. 1969. Root elongation rates of cotton and peanuts as a function of soil strength and soil water content. Soil Sci.. 108: 113-119.Usowicz, Thorup-Kristensen, K.. 2006. Effect of deep and shallow root systems on the dynamics of soil inorganic N during 3-year crop rotations. Plant Soil. 288: 233-248. Utset, A., and C. Greco. 2001. Soil penetrometer resistance spatial variability in a Ferralsol at several soil moisture conditions. Soil Till. Res.. 61: 193-202. Walter L., and C. Muensche. 1915. A study of the relation of transpiration to the size and number of stomata. Am. J. Bot.. 2: 487-504. Willmer, C.M.. 1983. Stomata. Longman Inc.. New York. Wilson, A.J., A.W. Robard and M.J. Goss.1977. Effects of mechanical impedance on root growth in barley (Hordeum vulgare L.) Ⅱ. Effects on develoment in seminal roots. J. Exp. Bot.. 28: 1216-1227. Wilson, C.C.. 1984 The effect of some environmental factors on the movements of guard cells. Plant Physiol.. 23: 5-37. Woolley, J.T. and E.W. Stoller. 1978. Light penetration and light-induced seed germination in soil. Plant Sci.. 61: 597-600. Wu,Y., R. Liu, Y. Zhao, P. Li, and C. Liu. 2009. Spatial and seasonal variation of salt ions under the influence of halophytes, and in a coastal flat in eastern China. Environ. Geol.. 57: 1501-1508. Yang, X.M., C.F. Drury, W.D. Reynolds, and C.S. Tan. 2008. Impacts of long-term and recently imposed tillage practices on the vertical distribution of soil organic carbon. Soil Till. Res.. 100: 120-124. Yu, G., H. Fang, L. Gao, and W. Zhang. 2006. Soil organic carbon budget and fertility variation of black soils in Northeast China. Ecol. Res.. 21: 855-867. Zeroni, M., and J. Gale. 1987. The effect of temperature on rose plants in relation to air-temprature. Plant Soil. 104: 93-98.
摘要: 在台灣因地狹人稠,耕地面積有限,因此主要以集約農業為主。而集約農業若因管理策略不當,易使土地生產力下降,且現今在田間可能會遇到氣候異常、土壤壓實與雜草競爭等問題,對作物生產更是一大考驗。田菁是在台灣推廣多年的綠肥作物,以往研究多著重於對土壤肥力的影響,少有對土壤物理性質及雜草控制的研究。本論文主要目的探討田菁Sesbania roxburgii (Merr.)對農田土壤壓實、雜草生長以及土壤溫度的影響。第一試驗在雲林斗六絲瓜(Luffa cylindrical Roemer.)田進行試驗,土壤質地為黏壤土與砂壤土,因經常用機械噴藥造成,在表土6公分處土壤穿刺阻力已大於25 kg cm-3。絲瓜田播種田菁30 kg ha-1 (SA)、裸地(BC)及抑草蓆(AG)覆蓋三種處理,用數據機連續記錄土壤溫度並測定穿刺阻力的變化。結果顯示種植田菁降低土壤高溫效應以土表變化最為明顯。撒播田菁後第20至23天土表田菁(SA)處理與無覆蓋(BC)處理振幅差距分別為6.52℃、6.44℃、8.58℃,與抑草席(AG)處理振幅差距分別為1.81℃、1.77℃、2.38℃。隨著田菁的生長,土壤剖面穿刺阻力有下降的趨勢。第二試驗:將絲瓜田土壤填入直徑72 mm長72 cm塑膠管,在深度10至30公分深夯實成總體密度1.2、1.4、及1.6 g cm-3之壓實層,將管柱置於10公分深水中,模擬為地下水。管柱種植田菁,檢視田菁根系穿透過壓實層及觀察管柱溫度變化。結果顯示田菁根系可順利穿透過總體密度1.6 kg cm-3之壓實層,且45天後天菁的乾物種在3種壓實程度處理間無明顯差異。在管柱溫度變化方面,壓實層溫度隨氣溫升降改變的速度以1.6>1.4>1.2 g cm-3。第三試驗在台中市霧峰區田間進行田菁、野莧(Amaranthus viridis L.)與芒草(Miscanthus floridulus (Labill.) Warb. ex Schum. & Laut.)競爭生長試驗,田菁撒播量分半量15 kg ha-1(HR)及全量30 kg ha-1(FR),以不撒播田菁作為對照組(BK)。結果顯示在試驗第7天,HR與FR處理對野莧的抑制率分別為51.0%、40.1%。在試驗第21天,HR、FR處理對芒草的抑制率分別為92.7%、61.1%,對野莧的抑制率分別為-11.9%、-86.4%。第27天HR、FR處理對芒草的抑制率分別為83.9 %、9.7 %,對野莧的抑制率分別為-4.2%、-71.2%。根據以上試驗結果,田菁除了具備作為綠肥作物的能力外,對於土壤溫度振幅變化以及對芒草的抑制效果有正面幫助,因此田菁可能作為一種良好之多功能覆蓋作物。
In Taiwan, the intensive agriculture is the major practices system. However, if the practices of farming are not suitable for the lands, the crop productivity will be reduced caused by soil fertility degrading. The damage of crop production from the extreme climates will be worse, especially on heat stress. Sesbania has been recommended as the green manure in Taiwan. The main purpose of this thesis was on effect of Sesbania roxburgii (Merr.) planting on the improvement of soil compaction, ease soil heat stress and weeds inhibition. The first work was conducted in two loofah (Luffa cylindrical Roemer.) fields in Douliu, Yunlin. The soil textures were sandy loam and clay loam and having compacted layers with the penetration resistance (PR) higher than 25 kg cm-3 at 6 cm depth, due to overload by chemical spraying car. Monitoring the PR and soil temperature among covering sesbanias (SA) with seeding rate at 30 kg ha-1, mulching with anti-grass cloth cover (AG) and bared soil (BC). Results showed that the soil temperature was lowered of SA treatment, especially the surface soil. After sowing sesbanias for 20 to 23 days later, the day night temperature differences for three days between AG and BC were 1.81℃, 1.77℃, and 2.38℃, the corresponding values between SA and BC were 6.52℃, 6.44℃, and 8.58℃, respectively. The PR had been reduced after planting sesbania. The second experiment was conducted in green house, growing the sesbania in a 72 mm diameter column with 70 cm long filled with field soil and the soil between 10-30 cm depth was compacted to 1.2, 1.4, and 1.6 g cm-3 three bulk density (BD). Soil columns were set in to a box with 10 cm depth of water. Results showed that the root of the sesbania could penetrate through the compacted layers for all three compacted levels, and the dry weights of the sesbania were no significant differences among treatments. The temperature of the compacted layers affected by the air temperature was quicker with the higher of BD. The third experiment was conducted in Wufon, Taichung city, three sesbania seeding rates FR, HR, and BC with 30, 15, and 0 of seed used , respectively, were competed with Amaranthus viridis L. and Miscanthus floridulus (Labill.) Warb. ex Schum. & Laut.. The result showed that the inhibition effect of sesbnnia planting on weeds control on the 7th day, the inhibition rate on amaranths were 51.0% and 40.1% for the HR and FR treatments, respectively. On 21st day, the inhibition rate were -11.9% and -86.42% for the HR and FR treatments, respectively. On 27th day, the inhibition rate on amaranthes were -4.2% and -71.2% for the HR and FR treatments, respectively. The inhibition rate on miscanthus were 83.9% and 9.7% for the HR and FR treatments, respectively. According to these results, sesbanias is not only used as the green manure, but also may improve soil physical properties and reduced weeds damage, especially for late germination weeds.
URI: http://hdl.handle.net/11455/96236
文章公開時間: 2017-08-16
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.