Please use this identifier to cite or link to this item:
標題: Effects of C/Fe ratios, pH, and Al on the Structures of Dissolved Organic Matter-Fe Hydroxides Co-precipitates and Cr(VI) Transformations
作者: Kai-Yue Chen
關鍵字: 可溶性有機質-鐵氫氧化物共沉澱物
DOM/Fe co-precipitates
引用: Aiken, G.R. 1985. Humic substances in soil, sediment, and water: geochemistry, isolation, and characterization. John Wiley & Sons, New York. Ainsworth, C., D. Girvin, J. Zachara, and S. Smith. 1989. Chromate adsorption on goethite: effects of aluminum substitution. Soil Sci. Soc. Am. J. 53: 411-418. Ajouyed, O., C. Hurel, M. Ammari, L.B. Allal, and N. Marmier. 2010. Sorption of Cr (VI) onto natural iron and aluminum (oxy) hydroxides: effects of pH, ionic strength and initial concentration. J. Hazard. Mater. 174: 616-622. Alvarez-Puebla, R., and J. Garrido. 2005. Effect of pH on the aggregation of a gray humic acid in colloidal and solid states. Chemosphere 59: 659-667. Bielicka, A., I. Bojanowska, and A. Wisniewski. 2005. Two Faces of Chromium-Pollutant and Bioelement. Pol. J. Environ. Stud. 14: 5-10. Blodau, C. 2002. Carbon cycling in peatlands A review of processes and controls. Environ. Rev. 10: 111-134. Bloomfield, C. 1953. A study of podzolization. Eur. J. Soil Sci. 4: 5-16. Bloomfield, C. 1954. A study of podzolization. Eur. J. Soil Sci. 5: 50-56. Campitelli, P.A., M.I. Velasco, and S.B. Ceppi. 2006. Chemical and physicochemical characteristics of humic acids extracted from compost, soil and amended soil. Talanta 69: 1234-1239. Chefetz, B., Y. Chen, and Y. Hadar. 1998. Purification and characterization of laccase fromChaetomium thermophilium and its role in humification. Appl. Environ. Microbiol. 64: 3175-3179. Chen, C., J.J. Dynes, J. Wang, and D.L. Sparks. 2014. Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environ. Sci. Technol. 48: 13751-13759. Chen, K.Y., J.C. Liu, P.N. Chiang, S.L. Wang, W.H. Kuan, Y.M. Tzou, Y. Deng, K. Tseng, C. Chen, and M. Wang. 2012. Chromate removal as influenced by the structural changes of soil components upon carbonization at different temperatures. Environ. Pollut. 162: 151-158. Chen, S.Y., S.W. Huang, P.N. Chiang, J.C. Liu, W.H. Kuan, J.H. Huang, J.T. Hung, Y.M. Tzou, C.C. Chen, and M. Wang. 2011. Influence of chemical compositions and molecular weights of humic acids on Cr(VI) photo-reduction. J. Hazard. Mater. 197: 337-344. Christ, M.J., and M.B. David. 1996. Temperature and moisture effects on the production of dissolved organic carbon in a spodosol. Soil Biol. Biochem. 28: 1191-1199. Cornell, R., and U. Schwertmann. 1996. Structure, properties, reactions, occurrence and uses. p. 375-395. The iron oxides. VCH, Weinheim. Cornell, R.M., and U. Schwertmann. 2004. Electronic, electrical and magnetic properties and colour. Wiley-VCH. Cronan, C.S., and G.R. Aiken. 1985. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York. Geochim. Cosmochim. Acta 49: 1697-1705. Dahlgren, R., and D. Marrett. 1991. Organic carbon sorption in arctic and subalpine Spodosol B horizons. Soil Sci. Soc. Am. J. 55: 1382-1390. Dalva, M., and T. Moore. 1991. Sources and sinks of dissolved organic carbon in a forested swamp catchment. Biogeochemistry 15: 1-19. Davis, A., and R.L. Olsen. 1995. The geochemistry of chromium migration and remediation in the subsurface. Groundwater 33: 759-768. Davis, J.A., and J.O. Leckie. 1978. Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides. Environ. Sci. Technol. 12: 1309-1315. Deng, B., and A.T. Stone. 1996. Surface-catalyzed chromium(VI) reduction: reactivity comparisons of different organic reductants and different oxide surfaces. Environ. Sci. Technol. 30: 2484-2494. De Coninck, F. 1980. Major mechanisms in formation of spodic horizons. Geoderma 24: 101-128. Dube, A., R. Zbytniewski, T. Kowalkowski, E. Cukrowska, and B. Buszewski. 2001. Adsorption and migration of heavy metals in soil. Pol. J. Environ. Stud. 10: 1-10. Eaton, A.D., L. Clesceri, and A. Greenberg. 1995. Standard Methods for the Examination of Water andWastewater. p. 225-257. American Public Health Association, Washington, DC. Edwards, A.P., and J. Bremner. 1967. Microaggregates in soils. Eur. J. Soil Sci. 18: 64-73. Elliott, E. 1986. Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils 1. Soil Sci. Soc. Am. J. 50: 627-633. Eusterhues, K., T. Rennert, H. Knicker, I. Kögel-Knabner, K.U. Totsche, and U. Schwertmann. 2010. Fractionation of organic matter due to reaction with ferrihydrite: coprecipitation versus adsorption. Environ. Sci. Technol. 45: 527-533. Eusterhues, K., F.E. Wagner, W. Häusler, M. Hanzlik, H. Knicker, K.U. Totsche, I. Kögel-Knabner, and U. Schwertmann. 2008. Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and Mossbauer spectroscopy. Environ. Sci. Technol. 42: 7891-7897. Fendorf, S., M.J. Eick, P. Grossl, and D.L. Sparks. 1997. Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ. Sci. Technol. 31: 315-320. Fendorf, S.E. 1995. Surface reactions of chromium in soils and waters. Geoderma 67: 55-71. Ferris, F. 2005. Biogeochemical properties of bacteriogenic iron oxides. Geomicrobiol. J. 22: 79-85. Fotovat, A., and R. Naidu. 1998. Changes in composition of soil aqueous phase influence chemistry of indigenous heavy metals in alkaline sodic and acidic soils. Geoderma 84: 213-234. Fukushima, M., K. Nakayasu, S. Tanaka, and H. Nakamura. 1995. Chromium(III) binding abilities of humic acids. Anal. Chim. Acta 317: 195-206. Fuller, C.C., J.A. Davis, and G.A. Waychunas. 1993. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim. Cosmochim. Acta 57: 2271-2282. Gerin, P.A., M. Genet, A. Herbillon, and B. Delvaux. 2003. Surface analysis of soil material by X‐ray photoelectron spectroscopy. Eur. J. Soil Sci. 54: 589-604. Griffin, R., A.K. Au, and R. Frost. 1977. Effect of pH on adsorption of chromium from landfill‐leachate by clay minerals. J. Environ. Sci. Heal. A. 12: 431-449. Grossl, P.R., M. Eick, D.L. Sparks, S. Goldberg, and C.C. Ainsworth. 1997. Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. 31: 321-326. Gu, B., J. Schmitt, Z. Chen, L. Liang, and J.F. McCarthy. 1994. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ. Sci. Technol. 28: 38-46. Guan, X.H., G.H. Chen, and C. Shang. 2006. Combining kinetic investigation with surface spectroscopic examination to study the role of aromatic carboxyl groups in NOM adsorption by aluminum hydroxide. J. Colloid Interface Sci. 301: 419-427. Guan, X.H., C. Shang, and G.H. Chen. 2006. ATR-FTIR investigation of the role of phenolic groups in the interaction of some NOM model compounds with aluminum hydroxide. Chemosphere 65: 2074-2081. Guggenberger, G., K. Kaiser, and W. Zech. 1998. Mobilization and immobilization of dissolved organic matter in forest soils. J. Plant Nutr. Soil Sci. 161: 401-408. Guggenberger, G., W. Zech, and H.R. Schulten. 1994. Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions. Org. Geochem. 21: 51-66. Hammes, K., R.J. Smernik, J.O. Skjemstad, and M.W. Schmidt. 2008. Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. Appl. Geochem. 23: 2113-2122. Harvey, O., and R. Rhue. 2008. Kinetics and energetics of phosphate sorption in a multi-component Al(III)–Fe(III) hydr(oxide) sorbent system. J. Colloid Interface Sci. 322: 384-393. Ho, Y.S., and G. McKay. 1999. Pseudo-second order model for sorption processes. Process Biochem. 34: 451-465. Hsu, L.C., Y.T. Liu, and Y.M. Tzou. 2015. Comparison of the spectroscopic speciation and chemical fractionation of chromium in contaminated paddy soils. J. Hazard. Mater. 296: 230-238. Huang, S.W., P.N. Chiang, J.C. Liu, J.T. Hung, W.H. Kuan, Y.M. Tzou, S.L. Wang, J.H. Huang, C.C. Chen, and M.K. Wang. 2012. Chromate reduction on humic acid derived from a peat soil–Exploration of the activated sites on HAs for chromate removal. Chemosphere 87: 587-594. Iglesias-Jiménez, E., E. Poveda, M. Sánchez-Martín, and M. Sánchez-Camazano. 1997. Effect of the nature of exogenous organic matter on pesticide sorption by the soil. Arch. Environ. Contam. Toxicol. 33: 117-124. James, B.R., and R.J. Bartlett. 1983. Behavior of Chromium in Soils: VII. Adsorption and Reduction of Hexavalent Forms 1. J. Environ. Qual. 12: 177-181. Janney, D.E., J. Cowley, and P.R. Buseck. 2000. Structure of synthetic 2-line ferrihydrite by electron nanodiffraction. Am. Mineral. 85: 1180-1187. Janoš, P., V. Hůla, P. Bradnová, V. Pilařová, and J. Šedlbauer. 2009. Reduction and immobilization of hexavalent chromium with coal-and humate-based sorbents. Chemosphere 75: 732-738. Jansen, B., K.G. Nierop, and J.M. Verstraten. 2003. Mobility of Fe(II), Fe(III) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios. Geoderma 113: 323-340. Jardine, P., S. Fendorf, M. Mayes, I. Larsen, S. Brooks, and W. Bailey. 1999. Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ. Sci. Technol. 33: 2939-2944. Jastrow, J. 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 28: 665-676. Jena, B.K., and C.R. Raj. 2008. Highly sensitive and selective electrochemical detection of sub-ppb level chromium(VI) using nano-sized gold particle. Talanta 76: 161-165. Johnston, C.P., and M. Chrysochoou. 2012. Investigation of chromate coordination on ferrihydrite by in situ ATR-FTIR spectroscopy and theoretical frequency calculations. Environ. Sci. Technol. 46: 5851-5858. Kaiser, K., and G. Guggenberger. 2000. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org. Geochem. 31: 711-725. Kaiser, K., and G. Guggenberger. 2007. Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation. Eur. J. Soil Sci. 58: 45-59. Kaiser, K., G. Guggenberger, L. Haumaier, and W. Zech. 1997. Dissolved organic matter sorption on sub soils and minerals studied by 13C‐NMR and DRIFT spectroscopy. Eur. J. Soil Sci. 48: 301-310. Kalbitz, K., and S. Geyer. 2002. Different effects of peat degradation on dissolved organic carbon and nitrogen. Org. Geochem. 33: 319-326. Kalbitz, K., S. Solinger, J.-H. Park, B. Michalzik, and E. Matzner. 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci. 165: 277-304. Karlsson, T., and P. Persson. 2010. Coordination chemistry and hydrolysis of Fe(III) in a peat humic acid studied by X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 74: 30-40. Karlsson, T., and P. Persson. 2012. Complexes with aquatic organic matter suppress hydrolysis and precipitation of Fe(III). Chem. Geol. 322: 19-27. Karlsson, T., P. Persson, U. Skyllberg, C.M. Mörth, and R. Giesler. 2008. Characterization of iron(III) in organic soils using extended X-ray absorption fine structure spectroscopy. Environ. Sci. Technol. 42: 5449-5454. Kelly, S., D. Hesterberg, and B. Ravel. 2008. Analysis of soils and minerals using x-ray absorption spectroscopy. p. 387-464. In A.L. Ulery and L.R. Drees (ed.) Methods of soil analysis. Part 5. Mineralogical methods. SSSA Book Ser. 5. SSSA, Madison, WI. Kleber, M., K. Eusterhues, M. Keiluweit, C. Mikutta, R. Mikutta, and P.S. Nico. 2015. Mineral–organic associations: formation, properties, and relevance in soil environments. Adv. Agron. 130: 1-140. Kotaś, J., and Z. Stasicka. 2000. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 107: 263-283. Kožuh, N., J. Štupar, and B. Gorenc. 2000. Reduction and oxidation processes of chromium in soils. Environ. Sci. Technol. 34: 112-119. Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623-1627. Lal, R. 2008. Carbon sequestration. Philos. Trans. R. Soc. Lond., Ser. B: Biol. Sci. 363: 815-830. Lalonde, K., A. Mucci, A. Ouellet, and Y. Gélinas. 2012. Preservation of organic matter in sediments promoted by iron. Nature 483: 198. Liang, B., J. Lehmann, D. Solomon, S. Sohi, J.E. Thies, J.O. Skjemstad, F.J. Luizao, M.H. Engelhard, E.G. Neves, and S. Wirick. 2008. Stability of biomass-derived black carbon in soils. Geochim. Cosmochim. Acta 72: 6069-6078. Lin, Y., S. Wang, W. Shen, P. Huang, P. Chiang, J. Liu, C. Chen, and Y. Tzou. 2009. Photo-enhancement of Cr(VI) reduction by fungal biomass of Neurospora crassa. Appl. Catal. B-Environ. 92: 294-300. Liu, Y.T., and D. Hesterberg. 2011. Phosphate bonding on noncrystalline Al/Fe-hydroxide coprecipitates. Environ. Sci. Technol. 45: 6283-6289. Lubal, P., D. Široký, D. Fetsch, and J. Havel. 1998. The acidobasic and complexation properties of humic acids: Study of complexation of Czech humic acids with metal ions. Talanta 47: 401-412. Lundström, U.S., N. van Breemen, and D. Bain. 2000. The podzolization process. A review. Geoderma 94: 91-107. Manceau, A., and J. Combes. 1988. Structure of Mn and Fe oxides and oxyhydroxides: a topological approach by EXAFS. Phys. Chem. Miner. 15: 283-295. Manceau, A., and V. Drits. 1993. Local structure of ferrihydrite and feroxyhite by EXAFS spectroscopy. Clay Miner. 28: 165-165. McDowell, W.H., W.S. Currie, J.D. Aber, and Y. Yang. 1998. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. p. 175-182. Biogeochemical Investigations at Watershed, Landscape, and Regional Scales. Springer, Dordrecht. McDowell, W.H., and G.E. Likens. 1988. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol. Monogr. 58: 177-195. Michel, F.M., L. Ehm, S.M. Antao, P.L. Lee, P.J. Chupas, G. Liu, D.R. Strongin, M.A. Schoonen, B.L. Phillips, and J.B. Parise. 2007. The structure of ferrihydrite, a nanocrystalline material. Science 316: 1726-1729. Mikutta, C. 2011. X-ray absorption spectroscopy study on the effect of hydroxybenzoic acids on the formation and structure of ferrihydrite. Geochim. Cosmochim. Acta 75: 5122-5139. Mikutta, C., J. Frommer, A. Voegelin, R. Kaegi, and R. Kretzschmar. 2010. Effect of citrate on the local Fe coordination in ferrihydrite, arsenate binding, and ternary arsenate complex formation. Geochim. Cosmochim. Acta 74: 5574-5592. Mikutta, R., D. Lorenz, G. Guggenberger, L. Haumaier, and A. Freund. 2014. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption. Geochim. Cosmochim. Acta 144: 258-276. Nakamoto, K. 1977. Infrared and Raman spectra of inorganic and coordination compounds.Wiley, New York. Newville, M. 2001. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8: 322-324. Niemeyer, J., Y. Chen, and J.M. Bollag. 1992. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Sci. Soc. Am. J. 56: 135-140. Nierop, K.G., B. Jansen, and J.M. Verstraten. 2002. Dissolved organic matter, aluminium and iron interactions: precipitation induced by metal/carbon ratio, pH and competition. Sci. Total Environ. 300: 201-211. Patterson, J.W. 1985. Industrial wastewater treatment technology. 2nd ed. United States. Pettine, M., L. D'ottone, L. Campanella, F.J. Millero, and R. Passino. 1998. The reduction of chromium(VI) by iron(II) in aqueous solutions. Geochim. Cosmochim. Acta 62: 1509-1519. Piccolo, A. 2002. The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv. Agron. 75: 57-134. Pohlman, A.A., and J.G. McColl. 1988. Soluble organics from forest litter and their role in metal dissolution. Soil Sci. Soc. Am. J. 52: 265-271. Qafoku, N.P., P.E. Dresel, E. Ilton, J.P. McKinley, and C.T. Resch. 2010. Chromium transport in an acidic waste contaminated subsurface medium: The role of reduction. Chemosphere 81: 1492-1500. Raison, R., P. Khanna, and P. Woods. 1985. Mechanisms of element transfer to the atmosphere during vegetation fires. Can. J. Forest Res. 15: 132-140. Ravel, B., and M. Newville. 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12: 537-541. Riedel, T., D. Zak, H. Biester, and T. Dittmar. 2013. Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proc. Natl. Acad. Sci. 110: 10101-10105. Rose, J., M.M. Cortalezzi-Fidalgo, S. Moustier, C. Magnetto, C.D. Jones, A.R. Barron, M.R. Wiesner, and J.-Y. Bottero. 2002. Synthesis and Characterization of Carboxylate−FeOOH Nanoparticles (Ferroxanes) and Ferroxane-Derived Ceramics. Chem. Mater. 14: 621-628. Scheel, T., C. Dörfler, and K. Kalbitz. 2007. Precipitation of dissolved organic matter by aluminum stabilizes carbon in acidic forest soils. Soil Sci. Soc. Am. J. 71: 64-74. Scheel, T., L. Haumaier, R.H. Ellerbrock, J. Rühlmann, and K. Kalbitz. 2008. Properties of organic matter precipitated from acidic forest soil solutions. Org. Geochem. 39: 1439-1453. Schmidt, M.W., M.S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I.A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, and D.A. Manning. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478: 49. Schneider, M., T. Scheel, R. Mikutta, P. Van Hees, K. Kaiser, and K. Kalbitz. 2010. Sorptive stabilization of organic matter by amorphous Al hydroxide. Geochim. Cosmochim. Acta 74: 1606-1619. Schnitzer, M. 1999. A lifetime perspective on the chemistry of soil organic matter. Adv. agron. 68: 1-58. Schumacher, M., I. Christl, A.C. Scheinost, C. Jacobsen, and R. Kretzschmar. 2005. Chemical heterogeneity of organic soil colloids investigated by scanning transmission X-ray microscopy and C-1s NEXAFS microspectroscopy. Environ. Sci. Technol. 39: 9094-9100. Schwertmann, U., and R.M. Taylor. 1989. Iron oxides. Minerals in soil environments, 2nd ed. Soil Science Society of America, Madison, WI, p. 379-438. Schwertmann, U., and R.M. Cornell. 2007. Iron Oxides in the Laboratory: Preparation and Characterization. p. 5-18. VCH, New York. Siéliéchi, J.M., B. Lartiges, G. Kayem, S. Hupont, C. Frochot, J. Thieme, J. Ghanbaja, J.d.E. de la Caillerie, O. Barrès, and R. Kamga. 2008. Changes in humic acid conformation during coagulation with ferric chloride: implications for drinking water treatment. Water Res. 42: 2111-2123. Six, J., R. Conant, E.A. Paul, and K. Paustian. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241: 155-176. Six, J., E. Elliott, and K. Paustian. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32: 2099-2103. Six, J., K. Paustian, E.T. Elliott, and C. Combrink. 2000. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 64: 681-689. SØrensen, L.H. 1972. Stabilization of newly formed amino acid metabolites in soil by clay minerals. Soil Sci. 114: 5-11. Sparks, D.L. 1999. Kinetics and mechanisms of chemical reactions at the soil mineral/water interface. p. 135-191. Soil physical chemistry. CRC Press, New York. Sparks, D.L., E.J. Elzinga, and D. Peak. 2001. Understanding sulfate adsorption mechanisms on iron(III) oxides and hydroxides: results from ATR-FTIR spectroscopy. p. 173-196. Heavy metals release in soils. CRC Press. Stevenson, F.J. 1994. Humus chemistry: genesis, composition, reactions. John Wiley & Sons, New York, USA. Stevenson, F.J., and M.A. Cole. 1999. Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons, New York. Stewart, M., P.M. Jardine, M. Barnett, T. Mehlhorn, L. Hyder, and L. McKay. 2003. Influence of Soil Geochemical and Physical Properties on the Sorption and Bioaccessibility of Chromium(III). J. Environ. Qual. 32: 129-137. Suksabye, P., P. Thiravetyan, W. Nakbanpote, and S. Chayabutra. 2007. Chromium removal from electroplating wastewater by coir pith. J. Hazard. Mater. 141: 637-644. Swift, R.S. 1996. Organic matter characterization. Methods of Soil Analysis Part 3—Chemical Methods: 1011-1069. Thoral, S., J. Rose, J. Garnier, A. Van Geen, P. Refait, A. Traverse, E. Fonda, D. Nahon, and J. Bottero. 2005. XAS study of iron and arsenic speciation during Fe(II) oxidation in the presence of As(III). Environ. Sci. Technol. 39: 9478-9485. Tian, X., X. Gao, F. Yang, Y. Lan, J.D. Mao, and L. Zhou. 2010. Catalytic role of soils in the transformation of Cr(VI) to Cr(III) in the presence of organic acids containing α-OH groups. Geoderma 159: 270-275. Tipping, E. 2002. Cation binding by humic substancesCambridge University Press. Tipping, E., and M.A. Hurley. 1988. A model of solid‐solution interactions in acid organic soils, based on the complexation properties of humic substances. Eur. J. Soil Sci. 39: 505-519. Tipping, E., and C. Woof. 1990. Humic substances in acid organic soils: modelling their release to the soil solution in terms of humic charge. Eur. J. Soil Sci. 41: 573-586. Tipping, E., C. Woof, E. Rigg, A. Harrison, P. Ineson, K. Taylor, D. Benham, J. Poskitt, A. Rowland, and R. Bol. 1999. Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment. Environ. Int. 25: 83-95. Tisdall, J.M., and J.M. Oades. 1982. Organic matter and water‐stable aggregates in soils. Eur. J. Soil Sci. 33: 141-163. Torn, M.S., S.E. Trumbore, O.A. Chadwick, P.M. Vitousek, and D.M. Hendricks. 1997. Mineral control of soil organic carbon storage and turnover. Nature 389: 170. Tzou, Y.M., S.L. Wang, J.C. Liu, Y.Y. Huang, and J.H. Chen. 2008. Removal of 2, 4, 6-trichlorophenol from a solution by humic acids repeatedly extracted from a peat soil. J. Hazard. Mater. 152: 812-819. Tzou, Y.M., R. Loeppert, and M. Wang. 2003. Light-catalyzed chromium(VI) reduction by organic compounds and soil minerals. J. Environ. Qual. 32: 2076-2084. van Schaik, J.W., I. Persson, D.B. Kleja, and J.P. Gustafsson. 2008. EXAFS study on the reactions between iron and fulvic acid in acid aqueous solutions. Environ. Sci. Technol. 42: 2367-2373. Violante, A., and P. Huang. 1993. Formation mechanism of aluminum hydroxide polymorphs. Clays Clay Miner. 41: 590-597. Wang, S.L., and J.F. Lee. 2011. Reaction mechanism of hexavalent chromium with cellulose. Chem. Eng. J. 174: 289-295. Wang, X., S. Pehkonen, and A.K. Ray. 2004. Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Ind. Eng. Chem. Res. 43: 1665-1672. Wittbrodt, P.R., and C.D. Palmer. 1995. Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environ. Sci. Technol. 29: 255-263. Wittbrodt, P.R., and C.D. Palmer. 1996. Effect of temperature, ionic strength, background electrolytes, and Fe(III) on the reduction of hexavalent chromium by soil humic substances. Environ. Sci. Technol. 30: 2470-2477. Wittbrodt, P.R., and C.D. Palmer. 1997. Reduction of Cr(VI) by soil humic acids. Eur. J. Soil Sci. 48: 151-162. Xu, X.R., H.B. Li, X.Y. Li, and J.D. Gu. 2004. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere 57: 609-613. Yamamoto, T. 2008. Assignment of pre‐edge peaks in K‐edge x‐ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole? X-ray Spectrom. 37: 572-584. Yano, Y., W.H. McDowell, and N.E. Kinner. 1998. Quantification of biodegradable dissolved organic carbon in soil solution with flow-through bioreactors. Soil Sci. Soc. Am. J. 62: 1556-1564. Zabinsky, S., J. Rehr, A. Ankudinov, R. Albers, and M. Eller. 1995. Multiple-scattering calculations of X-ray-absorption spectra. Phys. Rev. B 52: 2995. Zayed, A.M., and N. Terry. 2003. Chromium in the environment: factors affecting biological remediation. Plant Soil 249: 139-156. Zech, W., N. Senesi, G. Guggenberger, K. Kaiser, J. Lehmann, T.M. Miano, A. Miltner, and G. Schroth. 1997. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79: 117-161. Zhao, H., H. Liu, and J. Qu. 2009. Effect of pH on the aluminum salts hydrolysis during coagulation process: Formation and decomposition of polymeric aluminum species. J. Colloid Interface Sci. 330: 105-112. Zhilin, D.M., P. Schmitt-Kopplin, and I.V. Perminova. 2004. Reduction of Cr(VI) by peat and coal humic substances. Environ. Chem. Lett. 2: 141-145.
摘要: 可溶性有機質與鐵離子的共沉澱作用對於穩定土壤中的碳及鐵扮演相當重要的角色,而土壤中豐富的鋁離子會影響可溶性有機質-鐵氫氧化物共沉澱物的結構發展,此外,可溶性有機質-鐵氫氧化物共沉澱物可能成為土壤及沉積物中重金屬,如:六價鉻,重要的清除者。本篇研究的目標為探討碳鐵比、pH及鋁離子影響可溶性有機質-鐵氫氧化物共沉澱物的結構與其對六價鉻轉變,研究目的包括: (1)觀察在不同pH值及碳鐵比變化下,可溶性有機質-鐵氫氧化物共沉澱物的結構發展及穩定性;(2)瞭解鋁離子在不同pH值及鐵鋁比的影響下,對於可溶性有機質-鐵氫氧化物共沉澱物結構發展的影響;(3)檢視在不同pH值及碳鐵比的影響下,鉻在可溶性有機質-鐵氫氧化物共沉澱物上的轉移及鍵結機制。結果顯示,可溶性有機質-鐵氫氧化物共沉澱物的結構依C/(C+Fe)比大致可分類為三種: (1) 當C/(C+Fe) ≤ 0.65,可溶性有機質-鐵氫氧化物共沉澱物以類水合鐵礦的結構為主(DFC I);(2) C/(C+Fe)介於0.71及0.89,則以類水合鐵礦與共用邊/共用角的鐵八面體連結Fe-C 鍵的混合結構為主(DFC II);(3)當C/(C+Fe) ≥ 0.92,結構則逐漸轉變為共用角的鐵八面體連結Fe-C鍵(DFC III)。此外,添加鋁離子也會影響可溶性有機質與鐵離子在不同pH值及Fe/Al比的共沉澱行為,其可區分為五種: (1)當Fe/(Fe+Al) > 0.25及pH 3.0時,可溶性有機質-鐵氫氧化物共沉澱物為主要的物種;(2)在Fe/(Fe+Al)為0.25 及pH ≤ 4.5時,可溶性有機質上的含氧官能基會與鐵鋁均勻的分佈在共沉澱物上;(3)然而當Fe/(Fe+Al) > 0.25及pH 4.5時,形成均勻分佈帶有共用角的鐵八面體之可溶性有機質-鐵氫氧化物共沉澱物,且鐵的結構會逐漸被鋁及可溶性有機質所覆蓋;(4)當Fe/(Fe+Al) 為 0.25及pH 6.0時,生成的鋁氫氧化物被散佈的鐵八面體與可溶性有機質包埋;(5)在Fe/(Fe+Al) > 0.25 及pH 6時,可溶性有機質與鋁的鍵結可能會促進鐵核的生成。一旦可溶性有機質-鐵氫氧化物共沉澱物在土壤中生成,其可能會變成六價鉻重要的清除劑之一。然而,六價鉻在可溶性有機質-鐵氫氧化物共沉澱物上的轉移主要與C/(C+Fe)比例及溶液pH值有關,例如,當C/(C+Fe)比小於0.89時,可溶性有機質-鐵氫氧化物共沉澱物中的鐵氫氧化物可以快速的吸附六價鉻;六價鉻的還原量則與可溶性有機質含量及溶液pH值兩者有關,但是溶液pH值似乎是控制六價鉻還原的關鍵因子。可溶性有機質-鐵氫氧化物共沉澱物與六價鉻的交互作用,可依沉澱物的C/(C+Fe)比及pH值分為四種不同機制: (1) 在C/(C+Fe) ≤ 0.65,接近100 %的六價鉻吸附在DFC I結構類似水合鐵礦的表面上;(2)當C/(C+Fe)介於0.71及0.89時,鐵氫氧化物吸附六價鉻為主要的物種,而還原的產物三價鉻部分的鍵結在DFC結構上之鐵氫氧化物或是可溶性有機質的表面;(3)然而,C/(C+Fe) ≥ 0.89及pH 4.5與6.0時,大部分的六價鉻被可溶性有機質還原成三價鉻,進而吸附在DFC結構的鐵氫氧化物表面;(4)當C/(C+Fe) ≥ 0.92及pH 3.0時,還原後的三價鉻則鍵結在DFC III結構之可溶性有機質上。總結來說,本篇研究發現C/Fe比控制可溶性有機質-鐵氫氧化物共沉澱物的結構發展而碳鐵比及溶液pH值兩者均會影響與其對六價鉻的吸附/還原反應,然而,pH值可能為控制鋁離子影響碳鐵之間的結構及共沉澱反應,同時影響六價鉻在可溶性有機質-鐵氫氧化物共沉澱物之還原行為之重要因子。
Co-precipitation of dissolved organic matter (DOM) and Fe is an important process occurring naturally that may stabilize C and Fe in the soil systems. Aluminum ions are abundant in soils, and thus, the structural developments of DOM/Fe co-precipitates (DFC) can be greatly affected by the element. In addition, the nanosized DOM/Fe co-precipitates may be a potential scavenger of heavy metals, e.g., Cr(VI), in soils and sediments. Thus, the overall goal of this research was to determine the effects of C/Fe ratios, pH, and Al ions on the structures of DOM/Fe co-precipitates and Cr(VI) transformations. The specific objectives were: (1) to determine the structural development and stabilization of DOM/Fe co-precipitates in relation to the changes of pH and C/Fe molar ratios; (2) to understand the effects of Al ions on the structural stabilization of DOM-Fe co-precipitates accompanied with the changes of pH and Fe/Al molar ratios; and (3) to examine the mechanisms of Cr bonding/transformation on DOM/Fe co-precipitates as influenced by the changes of pH and C/Fe molar ratios. Results showed that rhe local structures of DFC samples could be classified into three categories depending on the molar ratios of C/(C+Fe): (1) the ferrihydrite-like domain with the C/(C+Fe) molar ratios ≤ 0.65 (DFC structure I); (2) the mixtures of the edge/corner-sharing FeO6 octahedra associated with Fe-C bonds and ferrihydrite-like domains with the C/(C+Fe) molar ratios between 0.71 and 0.89 (DFC structure II); and (3) the corner-sharing FeO6 octahedra associated with Fe-C bonds with the C/(C+Fe) molar ratios ≥ 0.92 (DFC structure III). Additionally, influences of Al ions on the co-precipitation behaviors of DOM and Fe in relation to the changes of pH and Fe/Al ratios were categorized into five types : (1) DOM/Fe co-precipitates were the dominant species with a Fe/(Fe+Al) molar ratios > 0.25 at pH 3.0; (2) the O-containing groups of DOM homogenously associated with Fe(III) and Al domains of co-precipitates with a Fe/(Fe+Al) molar ratio of 0.25 at pH ≤ 4.5; (3) the mixtures of homogeneous distributions of DOM/Fe co-precipitates with a smaller size of Fe domain, and the Fe domain was gradually covered by Al domains and DOM molecules with Fe/(Fe+Al) molar ratios > 0.25 and at pH 4.5; (4) Al hydroxides covered by the homogeneous distributions of DOM and FeO6 with a Fe/(Fe+Al) molar ratio of 0.25 at pH 6.0; and (5) when the Fe/(Fe+Al) molar ratios > 0.25 at pH 6.0, the association between Al domains and DOM may promote the formation of Fe core. Once the DFC was formed in soil, it became an important scavenger of Cr(VI). However, Cr(VI) transformations on the DFC depend greatly on the C/(C+Fe) molar ratios and solution pH. For instance, the Fe domains of the DFC adsorbed rapidly Cr(VI) when the bulk C/(C+Fe) molar ratios of DFC were less than 0.89. The amounts of Cr(VI) reductions were related to both DOM contents and solution pH, but the pH seemed to be the key factor of controlling Cr(VI) reduction. The reactive mechanisms of Cr(VI) with DFC could be grouped into four types depending on C/(C+Fe) molar ratios and pH values: (1) Nearly 100% of Cr(VI) were associated with ferrihydrite-like domains of DFC with the bulk C/(C+Fe) molar ratios ≤ 0.65; (2) The Fe hydroxides-Cr(VI) was the dominant species of Cr, and the reductive products of Cr(III) were associated with Fe hydroxides or DOM when the bulk C/(C+Fe) molar ratios were between 0.71 and 0.89; (3) With C/(C+Fe) molar ratios ≥ 0.89, Cr(VI) was reduced by DOM and then associated with Fe(III) hydroxides at pH 4.5 and 6.0; and (4) At pH 3.0 and the C/(C+Fe) molar ratios ≥ 0.92, the DOM-Cr(III) complexes became the dominant Cr species. In general, the studies show that C/Fe molar ratios control the structural developments of DFC, and both of C/Fe molar ratios and solution pH affect adsorption/reduction reactions of Cr(VI) on DFC. However, the pH may be a key factor of controlling the formation of DFC in the presence of Al ions and regulating Cr(VI) reduction behavior on DFC.
文章公開時間: 2021-06-04
Appears in Collections:土壤環境科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.