Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96245
標題: Application of Clay-modified Electrodes on Electroanalysis of Tea Soups and Investigation of Layer Charge
黏粒修飾電極在茶湯偵測和層面電荷探討上的應用
作者: Yu-Ju Liu
劉育如
關鍵字: 黏土礦物
酚酸化合物
茶湯
層面電荷
電化學分析
clay minerals
phenolic compounds
tea soup
layer charge
electroanalysis
引用: 王文毅、陳鴻基、曾志明。2013a。烷銨插層黏粒修飾電極對標準添加二價汞之偵測。台灣農學會報 14:33-51。 王文毅、朱家瑩、陳鴻基、曾志明。2013b。以多鐵蒙特石鍍金修飾電極對土壤二價汞之偵測研究。台灣農學會報 14:184-206。 王皓葳。2016。以黏粒修飾電極對酚類化合物的電化學分析。國立中興大學碩士學位論文。 甘子能。1984。茶葉化學入門。台灣省茶業改良場林口分場編印。 朱家瑩、陳鴻基、曾志明。2013。以黏粒修飾電極探討對硝基苯酚的電化學反應。台灣農學會報 14:607-630。 朱家瑩、陳鴻基、曾志明。2014。黏土礦物層面電荷在苯二酚電化學行為之影響。台灣農學會報 15:276-296。 何任于、陳鴻基、曾志明。2013。以黏粒修飾電極法探討甲基藍之電化學活性。台灣農學會報 14:354-372。 林木連。2003。台灣的茶葉。 林榆倫。2014。普洱茶中strictinin與鞣花酸在抗A型流感病毒能力之分析。中興大學碩士論文。 吳振鐸。1985。台灣茶葉的分類。台灣茶葉研究彙報 4:155-158。 許得美、陳鴻基、曾志明。2015。以黏粒修飾電極法探討地衣芽孢桿菌之電化學反應。台灣農學會報 16:243-263。 陳冠亨、林榆倫、許君睿、曾志正。2014。野生普洱古樹茶富含具抑制流感病毒功效的多酚化合物–木麻黃素。農林學報 63:123-131。 陳鴻基、李國欽、莊作權。1995。利用黏粒修飾電極探討巴拉刈在黏土礦物膜層中的移動性。中華民國雜草學會會刊 16:1-13。 陳鴻基、曾志明。2003a。銅錳離子的吸附對巴拉刈在黏粒膜層中電化學活性的影響。中華農學會報 4:429-446。 陳鴻基、曾志明。2003b。銅錳離子的競爭吸附對巴拉刈在黏粒膜層中移動性的影響。興大農林學報 52:1-19。 陳鴻基、楊庭豪、曾志明。2003。利用方波伏安法探討不同離子對巴拉刈在土壤中移動的影響。興大農林學報 52:19-31。 姚開元、陳鴻基、曾志明。2009。不同黏土礦物修飾鍍銅電極之電化學分析與多巴胺之偵測。台灣農學會報 10:364-379。 姚開元、陳鴻基、曾志明。2010。多鐵蒙特石修飾鍍銅電極之電化學反應研究。台灣農學會報 11:524-542。 莊作權、陳鴻基。1991。膨脹性黏土礦物中的層面電荷在銨固定作用上的影響。中國農業化學會誌 29:427-438。 莊作權、陳鴻基。1993。土壤黏粒淨表面電荷在銨固定上的影。中國農業化學會誌 31:703-716。 曾志明、簡淑華、羅卿文、陳品誌、伊蘭歌、陳鴻基。1998。黏粒修飾電極在化學感測器之應用。研究彙刊A:自然科學與工程 22:447-455。 曾綉丹、陳鴻基、曾志明。2012a。以黏粒修飾電極法探討對苯二酚的電化學反應。台灣農學會報 13:84-106。 曾綉丹、陳鴻基、曾志明。2012b。巴拉刈在黏粒修飾電極對鄰苯二酚電化學分析上的影響。台灣農學會報 13:595-616。 鄭世堃、陳鴻基、曾志明。2007。以電化學方法探討烷基銨插層膨潤石類之表面電荷特性。中華農學會報 8:336-354。 謝兆申、王明果。1989。台灣土壤。國立中興大學土壤調查試驗中心。 蘇雅鈴。2014。超音波拋光技術於拋棄式網版印刷碳電極之研發與應用。國立中興大學博士學位論文。 Abdel-Hamid, R., and E.F. Newair. 2011. Electrochemical behavior of antioxidants: I. Mechanistic study on electrochemical oxidation of gallic acid in aqueous solutions at glassy-carbon electrode. J. Electroanal. Chem. 657: 107-112. Alikaridis, F. 1987. Natural constituents of Ilex species. J. Ethnopharmacol. 20: 121-144. Anik, M. 2011. Effect of Titanium additive element on the discharging behavior of MgNi Alloy electrode. Int. J. Hydrogen Energ. 36: 15075-15080. Bard, A.J. 1992. New challenges in electrochemistry and electroanalysis. Pure Appl. Chem. 64: 185-192. Bard, A.J., and L.R. Faulkner. 2001. Potential sweep methods. In: 'Electrochemical Methods. 2nd edition', ed. A.J. Bard and L.R. Faulkner, pp. 226-260. New York: John Wiley & Sons, Inc. Bastos, D.H.M., E.Y. Ishimoto, M.O.M. Marques, A.F. Ferri, and E.A.F.S. Torres. 2006. Essential oil and antioxidant activity of green mate and mate tea (Ilex paraguariensis) infusions. J. Food Compos. Anal. 19: 538-543. Bastos, D.H.M., L.A. Saldanha, R.R. Catharino, A.C.H.F. Sawaya, I.B.S. Cunha, P.O. Carvalho, and M.N. Eberlin. 2007. Phenolic antioxidants identified by ESI-MS from yerba mate (Ilex paraguariensis) and green tea (Camelia sinensis) extracts. Molecules. 12: 423-432. Bravo, L., L. Goya, and E. Lecumberri. 2007. LC/MS characterization of phenolic constituents of mate (Ilex paraguariensis, St. Hil.) and its antioxidant activity compared to commonly consumed beverages. Food Res. Int. 40: 393-405. Burris, K.P., F.M. Harte, P.M. Davidson, C.N. Stewart, Jr., and S. Zivanovic. 2012. Composition and bioactive properties of yerba mate (Ilex paraguariensis St. Hil.): A review. Chil. J. Agr. Res. 72: 268-274. Burst, J.F. 1991. The application of clay minerals in ceramics. Appl. Clay Sci. 5: 421-443. Cardozo, Jr. E.L., O. Ferrarese-Filho, L.C. Filho, M.D.L.L. Ferrarese, C.M. Donaduzzi, and J.A. Sturion. 2007. Methylxanthines and phenolic compounds in mate (Ilex paraguariensis St. Hil.) progenies grown in Brazil. J. Food Compos. Anal. 20: 553-558. Carini, M., R.M. Facino, G. Aldini, M. Calloni, and L. Colombo. 1998. Characterization of phenolic antioxidants from mate (Ilex paraguayensis) by liquid chromatography mass spectrometry and liquid chromatography tandem mass spectrometry. Rapid Commun. Mass Spectrom. 12: 1813-1819. Chakraborty, M., and A. Mitra. 2008. The antioxidant and antimicrobial properties of the methanolic extract from Cocos nucifera mesocarp. Food Chem. 107: 994-999. Chandra, S., and E. De Mejia Gonzalez. 2004. Polyphenolic compounds, antioxidant capacity, and quinone reductase activity of an aqueous extract of Ardisia compressa in comparison to mate (Ilex paraguariensis) and green (Camellia sinensis) teas. J. Agric. Food Chem. 52: 3583-3589. Chen, P., and R.L. McCreery. 1996. Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal. Chem. 68: 3958-3965. Chu, L., L. Han, and X. Zhang. 2011. Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode. J. Appl. Electrochem. 41: 687-694. Clifford, M.N., and J.R. Ramirez-Martinez. 1990. Tannins in wet-processed coffee beans and coffee pulp. Food Chem. 40: 191-200. De Silveria, T.F.F., A.D. Meinhart, T.C.L. de Souza, J.T. Filho, and H.T. Godoy. 2016. Phenolic compounds from yerba mate based beverages–A multivariate optimization. Food Chem. 190: 1159-1167. Elzea, J.M., and H.H. Murray. 1990. Variation in the mineralogical, chemical and physical properties of the Cretaceous Clay Spur bentonite in Wyoing and Montana. Appl. Clay Sci. 5: 229-248. Filip, R., P. Lopez, G. Giberti, J. Coussio, and G. Ferraro. 2001. Phenolic compounds in seven South American Ilex species. Fitoterapia. 72: 774-778. Fitch, A. 1990. Clay modified electrodes: a review. Clay Clay Miner. 38: 319-400. Fitch, A. 1995. Applications of electrochemistry to the study of transport phenomena in layered clays. In 'Access in Nanoporous Materials', ed. T.J. Pinnavaia and M.F. Thorpe, pp. 93-110. New York: Springer-Verlag New York Inc. Fitch, A., and R.J. Krzysik. 1994. Multisweep cyclic voltammetric studies on the effect of charge on diffusion and sorption processes of ML3n+ chelates at clay-modified electrodes. J. Electroanal. Chem. 379: 129-134. Fitch, A., J. Du, H. Gan, and J.W. Stucki. 1995. Effect of clay charge on swelling: A clay-modified electrode study. Clays and Clay Miner. 43: 607-614. Futalan, C.M., C.C. Kan, M.L. Dalida, K.J. Hsien, C. Pascua, and M.W. Wan. 2011. Comparative and competitive sorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr. Polym. 83: 528-536. Galarneau, A., A. Barodawalla, and T.J. Pinnavaia. 1995. Porous clay heterostructures formed by gallery-templated synthesis. Nature. 374: 529-531. Ghosh, P.K., and A.J. Bard. 1983. Clay-modified electrodes. J. Am. Chem. Soc. 105: 5691-5693. Gil, E.S., and R.O. Couto. 2013. Flavonoid electrochemistry: a review on the electroanalytical applications. Rev. Bras. Farmacogn. 23: 542-558. Gorski, C.A., M. Aeschbacher, D. Soltermann, A. Voegelin, B. Baeyens, M. Marques, T.B. Hofstetter, and M. Sander. 2012a. Redox properties of sturctural Fe in clay minerals. I. Electrochemical quantification of electron-donating and -accepting capacities of smectites. Environ. Sci. Technol. 46: 9360-9368. Gorski, C.A., L. Klüpfel, A. Voegelin, M. Sander, and T.B. Hofstetter. 2012b. Redox properties of sturctural Fe in clay minerals. II. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1. Environ. Sci. Technol. 46: 9369-9377. Gosmann, G., and E.P. Schenkel. 1989. A new saponin from Mate, Ilex paraguariensis. J. Nat. Prod. 52: 1367-1370. Gunckel, S., P. Santander, G. Cordano, J. Ferreira, S. Munoz, L.J. Nunez-Vergara, and J.A. Squella. 1998. Antioxidant activity of gallates: an electrochemical study in aqueous media. Chem-Biol. Interact. 114: 45-59. Heck, C.I., and E.G. de Mejia. 2007. Yerba Mate Tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J. Food Sci. 72: R138-151. Henry, J.P., and P. Stephens-Larson. 1984. Reduction of chronic psychosocial hypertension in mice by decaffeinated tea. Hypertension. 6: 437-444. Ho, C.T., Q. Chen, K.Q. Shi-Zhang, and R.T. Rosen. 1992. Antioxidative effect of polyphenol extract prepared from various Chinese teas. Prev. Med. 21: 520-525. Issacson, P.J., and B.L. Sawhney. 1983. Sorption and transformation of phenols on clay surface: Effect of exchangeable cations. Clay Miner. 18: 253-165. Joo, P., A. Fitch, and S.H. Park. 1997. Transport in hydrophobized montmorillonite thin films. Environ. Sci. Technol. 31: 2186-2192. Kadara, R.O., N. Jenkinson, and C.E. Banks. 2009. Characterisation of commercially available electrochemical sensing platforms. Sensors Actuat. B. 138: 556-562. Kang, J., Z. Li, X. Lu, and Y. Wang. 2004. Studies on the electrochemical behavior of 3-nitrobenzaldehyde thiosemicarbazone at glass carbon electrode modified with nano-γ-Al2O3. Electrochim. Acta 50: 19-26. Keith, K.S., and H.H. Murray. 1994. Clay liners and barriers. In 'Industrial Minerals and Rocks, 6th edition', ed. D.D. Carr, pp. 435-452. Littleton, Colorado: Society for Mining, Metallurgy and Exploration, Inc. Khokhar, S., and S.G. Magnusdottir. 2002. Total phenol, catechin, and caffenine contents of tea commonly consumed in the United Kingdom. J. Agric. Food. Chem. 50: 565-570. Kilmartin, P.A., and C.F. Hsu. 2003. Characterization of polyphenols in green, oolong, and black tea, and in coffee, using cyclic voltammetry. Food Chem. 82: 501-512. Ku, K.M., J. Kim, and H.J. Park. 2010. Application of Metabolomics in the Analysis of Manufacturing Type of Pu-erh Tea and Composition Changes with Different Postfermentation Year. J. Agric. Food Chem. 58: 345-352. Kumar, A.S., R. Shanmugam, S. Nellaiappan, and R. Thangaraj. 2016. Tea quality assessment by analyzing key polyphenolic functional groups using flow injection analysis coupled with a dual electrochemical detector. Sensors Actuat. B. 277: 352-361. Lin, Y.L., and J.K. Lin. 1997. (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down–regulating lipopolysaccharide–induced activity of transcription factor NFkB. Mol. Pharmacol. 52: 465-472. Liu, Z.R., and S.Q. Zhou. 2010. Adsorption of copper and nickel on Na-bentonite. Process. Saf. Environ Prot. 88: 62-66. Macha, S.M., and A. Fitch. 1998. Clay as architectural units at modified-electrodes. Mikrochim. Acta 128: 1-18. Maghear, A., M. Etienne, M. Tertiş, R. Săndulescu, and A. Walcarius. 2013. Clay-mesoporous silica composite films generated by electro-assisted self-assembly. Electrochim. Acta 112: 333- 341. Manaia, M.A.N., V.C. Diculescu, E.de Souza Gil, and A.M. Oliveira-Brett. 2012. Guaicolic spices curcumin and capsaicin electrochemical oxidation behavior at a glassy carbon electrode. J. Electroanal. Chem. 682: 83-89. Manisankar, P., G. Selvanathan, and C. Vedhi. 2006. Determination of pesticides using heteropolyacid montmorillonite clay-modified electrode with surfactant. Talanta 68: 686-692. Marques, V., and A. Farah. 2009. Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chem. 113: 1370-1376. Mousty, C. 2004. Sensors and biosensors based on clay-modified electrodes-new trends. Appl. Clay Sci. 27: 159-177. Mousty, C. 2010. Biosensing applications of clay-modified electrodes: A review. Anal. Bioanal. Chem. 396: 315-325. Murray, H.H. 1991. Overview- clay mineral applications. Appl. Clay Sci. 5: 379-395. Murray, H.H. 1999. Applied clay mineralogy today and tomorrow. Clay Miner. 34: 39-49. Murray, H.H. 2000. Traditional and new application for kaolin, smectite, and palygorskite: a general overview. Appl. Clay Sci. 17: 207-221. Murray, H.H. 2007. Applied clay mineralogy. Oxford, UK: Elsevier. Navrátilová, Z., and P. Kula. 2003. Clay modified electrodes: present application and prospects. Electroanal. 15: 837-846. Ngameni, E., I.K. Tonlé, J.T. Apohkeng, R.G.. B. Bouwé, A.T. Jieumboué, and A. Walcarius. 2006. Permselective and preconcentration properties of a surfactant-intercalated clay modified electrode. Electroanal. 18: 2243-2250. Novak, I., M.M. Šeruga, and Š. Komorsky-Lovric. 2009. Electrochemical characterization of epigallocatechin gallate using square-wave voltammetry. Electroanal. 21: 1019-1025. Oliveira-Neto, J.R., S.G. Rezende, C.F. Reis, S.R. Benjamin, M.L. Rocha, and E.S. Gil. 2016. Electrochemical behavior and determination of major phenolic antioxidants in selected coffee samples. Food Chem. 190: 506-512. Otheiambo, H.O., P.O. Owuor, and C.O. Othieno. 1988. Factors affecting tea quality: field variables – A review. Tea. 9: 36-40. Othieno, C.O. 1988. Summary of recommendations and observations from TRFK. Tea. 9: 50-65. Pecorari, M., and P. Bianco. 1998. Ion-exchanged voltammetry of cationic species at membrance clay-modified electrodes. Electroanal. 10: 181-186. Peres, R.G., F.G. Tonin, M.F.M. Tavares, and D.B. Rodriguez-Amaya. 2013. HPLC-DAD-ESI/MS indentification and quantification of phenolic compounds in ilex paraguariensis beverages and on-line evaluation of individual antioxidant activity. Molecules. 18: 3859-3871. Petridis, D., P. Falaras, and T.J. Pinnavaia. 1992. Self-assemby of ion-paired electron-transfer centers in a clay-modified electrode. Inorg. Chem. 31: 3530-3533. Qi, H., and C. Zhang. 2004. Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanal. 10: 17. Roginsky, V. 2003. Chain-breaking antioxidant activity of natural polyphenols as determined during the chain oxidation of methyl linoleate in Triton X-100 micelles. Arch. Biochem. Biophys. 414: 261-70. Roginsky, V., T. Barsukova, C.F. Hsu, and P.A. Kilmartin. 2003. Chain-breaking antioxidant activity and cyclic voltammetry characterization of polyphenols in a range of green, oolong, and black tea. J. Agric. Food Chem. 51: 5798-5802. Scheller, F.W., U. Wollenberger, C. Lei, W. Jin, B. Ge, C. Lehmann, F. Lisdat, and V. Fridmann. 2002. Bioelectrocatalysis by redox enzymes at modified elecrodes. Rev. Mol. Biotechnol. 82: 411-424. Schulze, D.G. 2002. An introduction to soil mineralogy. In: 'Soil Mineralogy with Environmental Applications. SSSA Book Series, no. 7', ed. J.B. Dixon and D.G. Schulze, pp. 1-35. Madison, Wisconsin, USA: Soil Science Society of America, Inc. Shindo, H., and P.M. Huang. 1985. Catalytic polymerization of hydroquinone by primary minerals. Soil Sci. 139: 505-511. Singer, A. 2002. Palygorskite and sepiolite. In 'Soil Mineralogy with Environmental Applications. SSSA Book Series, no. 7', ed. J.B. Dixon and D.G. Schulze, pp. 555-583. Madison, Wisconsin, USA: Soil Science Society of America, Inc. Singh, R., A.R. Polu, B. Bhattacharya, H.W. Rhee, C. Varlikli, P.K. Singh. 2016. Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renew. Sust. Energ. Rev. 65: 1098-1117. Solomon, D.H. 1968. Clay minerals as electron acceptors and/ or electron donors in organic reactions. Clay Clay miner. 16: 31-39. Souza, L.P., F. Calegari, A.J.G. Zarbin, L.H. Marcolino-Júnior, and M.F. Bergamini. 2011. Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode. J. Agr. Food Chem. 59: 7620-7625. Stein, J.A., and A. Fitch. 1995. Computerized system for dual-electrode multisweep cyclic voltammetry for use in clay-modified electrode studies. Anal. Chem. 67: 1322-1325. Su, Y.L., and S.H. Cheng. 2015. Sensitive and selective determination of gallic acid in green tea samples based on an electrochemical platform of poly(melamine) film. Anal. Chim. Acta. 901: 41-50. Subramanian, P., and A. Fitch. 1992. Diffusional transport of solutes through clay: Use of clay-modified electrodes. Env. Sci. Tech. 26: 1775-1779. Švegl, I.G., M. Kolaz, B. Ogorevc, and B. Pihhar. 1998. Vermiculite clay mineral as an effective carbon paste electrode modifier for the preconcentration and voltammetric determination of Hg(II) and Ag(II) ions. Fresenius J. Anal. Chem. 361: 358-362. Taleat, Z., A. Khoshroo, and M. Mazloum-Ardakani. 2014. Screen-printed electrodes for biosensing: A review (2008–2013). Microchim. Acta. 181: 865-891. Tashkhourian, J., and S.F. Nami-Ana. 2015. A sensitive electrochemical sensor for determination of gallic acid based on SiO2 nanoparticle modified carbon paste electrode. Mater. Sci. Eng. C. 52: 103-110. Tashkhourian, J., S.F. Nami-Ana, S. Hashemnia, and M.R. Hormozi-Nezhad. 2013. Construction of a modified carbon paste electrode based on TiO2 nanoparticles for the determination of gallic acid. J. Solid State Electrochem. 17: 157-165. Thangaraj, R., N. Manjula, and A.S. Kumar. 2012. Rapid simultaneous electrochemical sensing of tea polyphenols. Anal. Methods-UK. 4: 2922-2928. Theng, B.K.G. 1971. Mechanisms of foemation of colored clay-organic complexes. A review. Clay Clay Miner. 19: 383-390. Tomac, I., and M. Šeruga. 2016. Electrochemical properties of chlorogenic acids and determination of their content in coffee using differential pulse voltammetry. Int. J. Electrochem. Sci. 11: 2854-2876. Vaccari. A. 1998. Prepartion and catalytic properties of cationic and anionic clays. Catal Today. 41: 53-71. Wang, Thomas S.C., L.S. Wu, and F.Y. Lang. 1978. Catalytic polymerization of phenolic compounds by primary minerals. Soil Sci. 126: 15-21. Yassin, G.H., J.H. Koek, and N. Kuhnert. 2015. Model system-based mechanistic studies of black tea thearubigin formation. Food Chem. 180: 272-279. Zak, J., and T. Kuwana. 1982. Electrooxidative catalysis using dispersed alumina on glassy carbon surfaces. J. Am. Chem. Soc. 104: 5514-5515. Zen, J.M., and P.J. Chen. 1997. A selective voltammetric method for uric acid and dopamine detection using clay modified elecrodes. Anal. Chem. 69: 5087-5093. Zen, J.M., and A.S. Kumar. 2004. The prospects of clay mineral electrodes. Anal. Chem. 76: 205A-211A.
摘要: 黏粒修飾電極 (CME) 具有預濃縮分析物的能力,在分析上可以有更高靈敏度與更低偵測極限,可用於農藥、重金屬及有機化合物等的偵測,且黏粒層中所具有的電子傳導特性也常被用於電化學分析、光催化性和生化感測器等用途。茶葉中含有多量酚類化合物,已有文獻證實其具有多種保健及預防疾病之生理功效,其也是茶湯味道、香氣及色澤的重要來源。由於近年來台灣出現食安問題,常有產品標示不實的情況,因此,引發想利用嶄新快速的電化學分析方法來偵測茶湯中的酚類化合物。本論文研究目的以黏粒修飾鈦還原後再氧化電極 [Ti-SWa-SPCE*(O)] 搭配循環伏安法偵測茶湯及市售茶品之酚類化合物。試驗結果指出由17個不同品種及發酵程度之茶湯所偵測之循環伏安圖中可看到酚類化合物的氧化還原波峰對,其中烏龍茶類茶湯有較明顯的兩個氧化波峰 (0.5 V, 0.57 V),而紅茶類茶湯則只有一明顯氧化波峰 (0.6 V)。此外,由各商店所買到的46個市售茶品所測到的循環伏安圖中也有類似各種茶葉茶湯所測到的氧化還原波峰對,顯示茶品中確實含有和茶湯相類似的酚類化合物。46個茶品涵蓋有各種綠茶、烏龍茶及紅茶等,其中以16種紅茶類茶品只有一個氧化波峰 (0.59 V),其餘30種茶品均有兩個氧化還原波峰 (0.5 V, 0.57 V),且由16種紅茶類茶品的氧化波峰電流量 (6.61 ~ 59.35 μA) 得知其所含酚類化合物的含量不同,此偵測方法期望能有助於對茶葉茶湯和茶品酚類化合物的快速測定。此外,黏粒修飾電極亦可作為一種研究電化物質通過帶負電荷黏粒膜層之傳輸過程的方法,以往的研究常使用 Fe(CN)63- 及 Ru(NH3)63+ 作為偵測物以進行電化學分析特性的探討,故本研究將六種標準黏土礦物及十二種台灣代表性的土壤黏粒結合洋菜膠修飾在三極式網版印刷電極上,是本論文研究研發出來的一種新型修飾電極 (NCME, novel clay modified electrode),以 Ru(NH3)63+ 及 Fe(CN)63- 作為探針化合物,進行層面電荷特性之探討。試驗結果指出,六種標準黏土礦物及十二種土壤黏粒修飾電極對 Ru(NH3)63+ 及 Fe(CN)63- 偵測到的氧化還原波峰電流量皆會隨掃描速率增加而上升,且皆符合 Randles-Sevcik 擴散方程式理論,其中以 Ru(NH3)63+ 測得之氧化還原電流量皆大於 Fe(CN)63-,顯示 Ru(NH3)63+ 較能表現出不同黏粒修飾電極中層面電荷的電化學特性。六種標準黏土礦物修飾電極對 Ru(NH3)63+ 電化學反應皆有明顯的氧化還原波峰,且具有良好的可逆性,以 SWy-1 及 VTx-1 的氧化還原波峰訊號最為明顯,明顯能展現出黏土礦物的層面電荷特性,六種標準黏土礦物的負電荷電場效應則對 Fe(CN)63- 具有排斥力,導致 Fe(CN)63- 不易通過黏粒膠體膜層到達電極表面進行電化學反應,因而使其偵測到的氧化還原波峰電流量較不明顯。試驗結果中也指出十二種土壤黏粒修飾電極對 Ru(NH3)63+ 的電化學反應中,以柳營、五魁寮(4)及中壇可測得較大的氧化還原波峰對,而在 Fe(CN)63- 的反應上以柳營和中萬甲有較明顯之氧化還原波峰訊號。由於土壤黏粒是由不同黏土礦物與有機質、游離氧化鐵等物質所組成,而呈現一複雜系統,層面電荷的電化學分析會受到有機質含量、游離氧化鐵含量和膨脹性黏土礦物等所影響。
Clay-modified electrodes (CME) can preconcentrate and analyze and that have higher sensitivity and lower detection limits. CME also have been applied for the determination of pesticides, heavy metals and organic compounds, and that also are used as electroanalysis, photocatalysis and biosensors due to the good conductivity of clay layer. Tea contain a great number of phenolic compounds, and many studies are demonstrated that these compounds have many a variety of health care and prevention of the physiological effects of disease, and that also are the main source of the taste, smell and color of tea soups. Recently, many food safety problems have been reported in Taiwan which often occurred the situations of mislabeling and adulteration or counterfeit, therefore, we decide to use a new and rapid electrochemical methods to analyze the phenolic compounds of tea soups. In this research, the phenolic compounds of tea soups and commercially available tea products are detected by clay-modified screen-printed carbon electrodes with the reduction of Ti4+ and oxidation again [Ti-SWa-SPCE*(O)] using cyclic voltammetry method. The results indicated that the oxidation-reduction peak pairs of phenolic compounds can be seen from the cyclic voltammograms of seventeen teas with different varieties and degrees of fermentation. Oolong tea has two obvious oxidation peaks (0.5 V, 0.57 V), while black tea only observes one obvious oxidation peak. Furthermore, the cyclic voltammograms of forty-six commercially available tea products bought from different stores also appear the similar oxidation-reduction peak pairs to the results of tea soups, the results indicated tea products indeed contain phenolic compounds which are similar to tea soups. Forty-six commercial tea products having a variety of green tea, oolong tea and black tea. Sixteen black tea products have only one oxidative peak (0.59 V), and else thirty tea products all have two oxidative peaks (0.5 V, 0.57 V). Moreover, it can identify the different contents of phenolic compounds with the oxidative currents of sixteen kinds of black tea products (6.61 ~ 59.35 μA). This electrochemical method is expected to contribute to the rapid determination of phenolic compounds in tea soups and tea products. In addition, CME can be used as a method of studying the transport process of an electrochemical material [Fe(CN)63- and Ru(NH3)63+] through a negatively charged clay layer, and that were used to investigate layer charge characters of six standard clay minerals and twelve Taiwan representative soil clays with a new clay-modified electrode combining agar (novel clay modified electrode, NCME). The results showed that the oxidative-reductive currents of Ru(NH3)63+ and Fe(CN)63- for six standard clay minerals and twelve Taiwan representative soil clays increased with increasing scan rate and the currents and diffusive rate would fit Randles-Sevcik equation. The currents of Ru(NH3)63+ are larger than Fe(CN)63- that indicate Ru(NH3)63+ is a good probe for the character of layer charge of clay minerals in NCME. Ru(NH3)63+ have obvious oxidative-reductive peaks and great reversibilities in NCME of six standard clay minerals, especially as SWy-1 and VTx-1, while Fe(CN)63- is excluded by the negative charges of six standard clay minerals, leading little currents due to hardly pass the film of NCME. In twelve Taiwan representative soil clays, NCME of Liuying, Wukueiliao (4) and Chungtann get obvious redox peaks of Ru(NH3)63+, while NCME of Liuying and Chungwanchia have more peak current of Fe(CN)63-. Soil Clays have mixed compontents of clay minerals, organic matter and free iron oxides, and that will affect the current of Ru(NH3)63+ through the film of NCME. The character of layer charge of clay minerals are affected by organic matter and free iron oxides.
URI: http://hdl.handle.net/11455/96245
文章公開時間: 2020-08-16
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.