Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96246
標題: The effects of varieties and soil properties on cadmium concentration and food hygiene in vegetables
品種與土壤性質對蔬菜鎘濃度及其食用安全之影響
作者: Yu-Wen Lin
林毓雯
關鍵字: 蔬菜安全性
鎘累積能力
預測模式
品種
土壤性質
food hygiene in vegetable
cadmium accumulation capacity
variety
soil properties
引用: 行政院農委會。2014。農業統計年報。http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx 林浩潭、翁愫慎、李國欽。1992。作物中重金屬含量調查及我國國民對重金屬取食量之探討。中國農業化學會誌, 30: 463–470. 林毓雯、劉滄棽、陳吉村、湯雪溶、陳鴻堂、卓家榮、蔡正賢、林永鴻、張繼中、蔡淑珍、黃維廷。2012。台灣地區蔬菜鎘、鉛濃度調查。台灣農業研究, 61: 38–51. 施如佳、陳宛瑩、高雅敏、施養志。2008。台灣地區市售蔬菜類重金屬含量背景資料之建立。藥物食品檢驗局調查研究年報, 26: 212–224. 郭鴻裕、劉滄棽、陳柱中、王瑋宏、吳昇鴻、陳世擇、呂怡貞、詹政強、林毓雯。2016。農地鎘米潛勢區之改良計畫。行政院環境保護署計畫報告。行政院環境保護署。 郭鴻裕、朱戩良、江志峰、劉滄棽。2008。作物(水稻)吸收土壤重金屬機制與農產品安全之影響探討(1)。行政院環境保護署計畫報告。行政院環境保護署。 郭鴻裕、朱戩良、江志峰、劉滄棽。2009。作物(水稻)吸收土壤重金屬機制與農產品安全之影響探討(2)。行政院環境保護署計畫報告。行政院環境保護署。 郭鴻裕、朱戩良、江志峰、劉滄棽。2010。作物(水稻)吸收土壤重金屬機制與農產品安全之影響探討(3)。行政院環境保護署計畫報告。行政院環境保護署。 陳瑤瓊、王依婷、管麗珍、林宜蓉、周秀冠。2013。101年度市售蔬果中重金屬含量監測。食品藥物研究年報,4 : 77-85 2013。 Abe T, Fukami M, Ogasawara M 2008: Cadmium accumulation in the shoots and roots of 93 weed species. Soil Sci. Plant Nutr., 54, 566-573. Adriano DC 1986: Trace elements in the terrestrial environment. Springer-Verlag, NY. Alamgir M, Kibria MG, Islam M 2011: Effects of farm yard manure on cadmium and lead accumulation in Amaranth (Amaranthus oleracea L.). J. Soil Sci. Environ. Manage., 2, 237–240. Alexander PD, Alloway BJ, Dourado AM 2006: Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ. Pollut., 144, 736–745. Alloway BJ, Thornton I, Smart GA, Sherlock JC, Quinn MJ 1988: Metal availability. Sci. Total Environ., 75:41–69. Arao T, Takeda H, Nishihara E 2008: Reduction of cadmium translocation from roots to shoots in eggplant (Solanum melongena) by grafting onto Solanum torvum rootstock. Soil Sci. Plant Nutr., 54, 555–559. Basta NT, Gradwohl R, Snethen KL, Schroder JL 2001: Chemical mobilization of lead, zinc and cadmium in smelter contaminated soils treated with exceptional quality biosolids. J. Environ. Qual., 30, 1222–1230. Basta NT, Ryan JA, Chaney RL 2005: Trace element chemistry in residual-treated soils: key concepts and metal bioavailability. J. Environ. Qual., 34, 49–63. Bell MJ, McLaughlin MJ, Wright GC, Cruickshank A 1997: Inter- and intra-specific variation in accumulation of cadmium by peanut, soybean, and navybean. Aust. J. Agric. Res., 48, 1151–1160. Ben Amur W, Mediouni C, Tray B, et al. 2008: Glutathione and phytochelatin contents in tomato plants exposed to cadmium. Biol. Plant, 52: 314-320. Bešter PK, Lobnik F, Eržen I, Kastelec D, Zupan M 2013: Prediction of cadmium concentration in selected home-producedvegetables. Ecotox. Environ. Safe., 96, 182–190. Bingham FT, Page AL, Strong JE 1980: Yield and cadmium content of rice grain in relation to addition rates of cadmium, copper, nickel, and zinc with sewage sludge and liming. Soil Sci., 130: 32–38. Braude GL, Nash AM, Wolf WJ, Carr RL, Chaney RL 1980: Cadmium and lead content of soybean products. J. Food Sci., 45: 1187–1190. Chaney RL 1980: Health risks associated with toxic meatls in Municipal sluge. In Sludge–Health Risks of Land Application, Eds. G Bitton, BL Damro, GT Davidson, JM Davidson, pp 59–83, Ann Arbor Sci Pub, Ann Arbor, MI. Chaudri A, McGrath S, Gibbs P, Chambers B, Carlton-Smith C, Godley A, Bacon J, Campbell C, Aitken M 2007: Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts. Chemosphere, 66: 1415–1423. Chen ZS 2000: Relationship between heavy metal concentrations in soils of Taiwan and uptake by crops. Technical Bulletins of Food & Fertilizer Technology Center. http://www.fftc.agnet.org/library.php (April, 2015). Chen ZS, Li YC, Tsai CC 1998: Investigation on background values of heavy metals in soil environment of Taiwan. Project report of Environment Protection Administration (project no.: EPA-87-H104-03-03). Environment Protection Administration, Taipei (in Chinese with English abstract). Christensen TH 1984a: Cadmium soil sorption at low concentrations: I. effect of time, cadmium load, pH, and calcium. Water air soil pollut., 21: 105–114. Christensen, T. H. 1984a. Cadmium soil sorption at low concentrations: II. reversibility, effect of changes in solute composition, and effect of soil aging. Water air soil pollut. 21: 115-125. Corami, A., S. Mignardi, and V. Ferrini. 2008. Cadmium removal from single- and multi-metal (Cd plus Pb plus Zn) solution by sorption on hydroapatite. J. Colloid Interface Sci. 317: 402-408. Dabin, P., E. Marafante, J. M. Mousny, and C. Myttenaere. 1978. Adsorption, distribution and binding of cadmium and zinc in irrigated rice plants. Plant Soil, 50: 239- Davies, B. E., J. Vaugham, G. C. Lalor, and M. Vutchkov. 2003. Cadmium and zinc adsorption maxima of geochemically anomalous soils (Oxisols) in Jamaica. Chem. Spec. Bioavailab., 15: 59-66. Dell'Amino, E., L. Cavalca, and V. Andreoni. 2008. Improvement of Brassica napus growth under cadmium stress by cadmium-resistance rhizobacteria. Soil Biol. Biochem., 40: 74-84.Fan HL, Zhou W 2009: Screening of amaranth cultivars (Amaranthus mangostanus L.) for cadmium hyperaccumulation. Agricultural Sciences in China, 8, 342–351. Douay, F., H. Roussel, H. Fourrier, C. Heyman, and G. Chateau. 2007. Investigation of heavy metal concentrations on urban soils, dust and vegetables nearby a former smelter site in Mortagne du Nord, Northern France. J Soils Sediments, 7 : 143 – 146. Grambrell, R. P. 1994. Trace and toxic metals in wetlands: a review. J. Environ. Qual. 123: 883-891. Haghiri, F 1973 : Cadmium uptake by plants. J. Environ. Qual., 2, 93–96. Hattori H, Kuniyasu K, Chiba K, Chino M 2006 : Effect of chloride application and low soil pH on cadmium uptake from soil by plants. Soil Sci. Plant Nutr., 52, 89–94. Howe A, Fung LH, Lalor G, Rattray R, Vutchkov M 2005: Elemental composition of Jamaican foods 1: A survey of five food crop categories. Environ. Geochem. Health 27:19–30. Jones, K. C. and A. E. Johnston. 1989. Cadmium in cereal grain and herbage from long-term experimental plots at Rothamsted, UK. Environ. Pollut., 57: 199-216. Kabata-Pendias A. 2011. Trace elements in soils and plants, 4 eds. CRC Press, Boca Raton, FL. Kabata-Pendias A. and Sadurski W. 2004. Trace elements and compounds in soil. In: Elements and their compounds in the environment, 2 eds, E. Merian, M. Anke, M. Ihnat, M. Stoeppler, 79-99, Wiley-VCH, Weinheim. Kachenko AG, Singh B 2006: Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut. 169:101–123. Khoshgoftar AH, Shariatmadari H, Karimian N, Kalbasi M, Zee SEATM, Parker DR 2004: Salinity and zinc application effects on phytoavailability of cadmium and zinc. Soil Sci. Soc. Am. J., 68, 1885–1889. Lai HY, Chen BC 2013: The dynamic growth exhibition and accumulation of cadmium of pak choi (Brassica campestris L. ssp. chinensis) grown in contaminated soils. Int. J. Environ. Res. Public Health, 10, 5284–5298. Lamy, I., S. Bourgeois, A. Bermond. 1993. Soil cadmium mobility as a consequence of sewage disposal. J. Environ. Qual. 22: 731-737. Laxen, D. P. H. 1985. Trace metal adsorption/coprecipitation on hydrous ferric oxide under realistic conditions. Water Res., 19: 1229- Li N, Li Z, Fu Q, Zhuang P, Guo B 2012 : Effects of chelators and small organic acids on phytoextraction of Cd from soil with Amaranth hypochondriacus L. Fresenius Environmental Bulletin, 21, 1879–1884. Lin YP, Teng TP, Chang TK 2002: Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan. Landscape and Urban Planning, 62, 19–35. Lin Y. W., T. S. Liu, H. Y. Guo, C. M. Giang, H. J. Tang, H. T. Chen, and J. H. Chen. 2015. Relationships between Cd concentrations in different vegetables and those in arable soils, and food safety evaluation of vegetables in Taiwan. Soil Sci. Plant Nutr. 61: 983-998. DOI: 10.1080/00380768.2015.1078219. Lune P, Zwart KB 1997: Cadmium uptake by crops from the subsoil. Plant and Soil, 189, 231–237. Martin-Garin, A., J. P. Gaudet, L. Charlet, and X. Vitart. 2002. A dynamic study of the sorption and the transport processes of cadmium in calcareous sandy soils. Waste Manage. 22: 201-207. McBride MB 1994 : Environmental chemistry of soil. Oxford Univ. Press, NY. McBride MB 2002 : Cadmium uptake by crops estimated from soil total Cd and pH. Soil Science, 167, 62–67. McLean EO 1982: Soil pH and lime requirement. In Methods of soil analysis, Part 2, Chemical and Microbiological Properties, Eds AL Page, RH Miller, DR Keeney, pp 199–223, ASA and SSSA, Madison, WI. McLaughlin MJ, Bell MJ, Wright GC, Cozens GD 2000 : Uptake and partitioning of cadmium by cultivars of peanut (Arachis hypogaea L.). Plant and Soil, 222, 51–58. McLaughlin, M. L., L. T. Palmer, K. G. Tiller, T. A. Beech, and M. K. Smart. 1994. Increased soil salinity causes elevated cadmium concentrations in field-grown potato tubers. J. Environ. Qual., 23: 1013-1018 Ministry of Agriculture Forestry and Fisheries of Japan 2002: Survey of the cadmium contained in domestic vegetables. http://www.maff.go.jp/cd/PDF/C12.pdf (November, 2014, in Japanese) Mordvedt, J. J. 1987. Cadmium levels in soils and plants from some long-term soil fertility experiments in the United State of America. J. Environ. Qual., 16 : 137-142. Mulla, D. J., A. L. Page, and T. J. Ganje. 1980. Cadmium accumulations and bioavailability in soils from long-term, phosphorus fertilization. J. Environ. Qual., 9 : 408-412. Murray H, Pinchin TA, Macfie SM 2011: Compost application affects metal uptake in plants grown in urban garden soils and potential human health risk. J. Soils Sediments 11:815–829. Nabulo G, Oryem-Origa H, Diamond M 2006 : Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala city, Uganda. Environ. Res. 101:42–52. Nelson JL, Boawn LC, Viets FG 1959 : A method for assessing Zn status of soils using acid extractable Zn and 'titratable alkalinity' values. Soil Science, 88, 275–283. Rodrigues SM, Pereira ME, Duarte AC, Römkens PFAM 2012a: Soil–plant–animal transfer models to improve soil protection guidelines: A case study from Portugal. Environ. Int., 39, 27–37. Rodrigues SM, Pereira ME, Duarte AC, Römkens PFAM 2012b: Derivation of soil to plant transfer functions for metals and metalloids: impact of contaminant's availability. Plant Soil, 361:329–341. Römkens PFAM, Guo HY, Chu CL, Liu TS, Chiang CF, Koopmans GF 2009 : Prediction of cadmium uptake by brown rice and derivation of soil–plant transfer models to improve soil protection guidelines. Environ. Pollut., 157, 2435–2444. Rothbaum, H. P., R. L. Goguel, A. E. Johnston, and G. E. G. Mattingly. 1986. Cadmium accumulation in soils from long-continued applications of superphosphate. J. Soil Sci., 37: 99-107. Sanaeiostovar A, Khoshgoftarmanesh AH, Shariatmadari H 2011: Effects of zinc activity in nutrient solution on uptake, translocation, and root export of cadmium and zinc in three wheat genotypes with different zinc efficiencies. Soil Sci. Plant Nutr., 57, 681–690. Singh, B. R. and K. Myhr. 1998. Cadmium uptake by barley as affected by Cd sources and pH levels. Geoderma, 84: 185-194. Sims, JT 1986: Soil pH Effects on the Distribution and Plant Availability of Manganese, Copper, and Zinc1. Soil Sci. Soc. Am. J. 50:367-373. doi:10.2136/sssaj1986.03615995005000020023x Smolders, E. and F. Degryse. 2006. Fixation of cadmium and zinc in soils: implication for risk assessment. In: Natural attenuation of trace element availability in soils, eds. R. Hamon, M. McLaughlin, E. Lombi, 157-171, Taylor & Francis, Boca Raton,FL. Smolders, E., R. M. Lambebregts, M. J. McLaughlin, and K. G. Tiller. 1998. Effect of soil solution chloride on cadmium availability to swiss chard. J. Environ. Qual., 27: 426-431. Tahvonen, R, Kumpulainen J 1995: Lead and Cadmium in some berries and vegetables on the Finnish market in 1991–1993. Food Additives Contaminants 12:263–279. Taylor, M. D. 1997. Accumulation of cadmium derived from fertilisers in New Zealand soils. Sci. Total Environ., 208: 123–126. Taylor M. D. and H. J. Percival. 2001. Cadmium in soil solutions from a transect of soils away from a fertilizer bin. Environ. Pollut. 113:35-40. Toyama Prefectural Itai-itai Disease Museum. 2012. Web site of Toyama Prefectural Itai-itai Disease Museum. http://itaiitai-dis.jp/lang/english/index.html. Tichy, R., V. Nydl, S. Kuzel, and L. Kolar. 1997. Increased cadmium availability to crops on a sewage sludge amended soil. Water Air Soil Pollut., 94: 361- USDA 1996: Soil survey laboratory methods manual. Soil Survey Investigations, Report No. 42., pp 622–623, USDA, Washington, DC. U.S. Geological Survey, 2009, Mineral commodity summaries 2009: U.S. Geological Survey, 195 p. U.S. Geological Survey, 2016, Mineral commodity summaries 2016: U.S. Geological Survey, 202 p., http://dx.doi.org/10.3133/70140094. Wang G, Su MY, Chen YH, Lin FF, Luo D, Gao SF 2006: Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environ. Pollut., 144, 127–135. Wangstrand, H., J. Eriksson., and I. Oborn. 2007. Cadmium concentration in winter wheat as affected by nitrogen fertilization. Eur. J. Agron., 25: 209-214. Weggler, K., J. McLaughlin, and R. D. Graham. 2004. Effects of chloride in soil solution on the plant availability of biosolid-borne cadmium. J. Environ. Qual., 33: 496-504. Wiersma D, JG Berend, GV Nicolaas 1986: Cadmium, lead, mercury, and arsenic concentrations in crops and corresponding soils in The Netherlands. J. Agric. Food Chem., 34, 1067–1074. Williams, C. H. and D. J. David. 1976. The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants. Soil Sci., 121: 86-93. Wolnik KA, Fricke FL, Caper SG, Meyer MW, Satzger RD, Bonnin E, Gaston CM 1985: Elements in major raw agricultural crops in the United States. 3. cadmium, lead, and eleven other elements in carrots, field corn, onions, rice, spinach, and tomatoes. J. Agric. Food Chem., 33, 807–811. Wolnik KA, Fricke FL, Caper SG, Braude GL, Meyer MW, Satzger RD, Bonnin E 1983: Elements in major raw agricultural crops in the United States. 1. cadmium and lead in lettuce, peanuts, potatoes, soybeans, sweet corn, and wheat. J. Agric. Food Chem., 31, 1240–1244. Yan, S., C. Ling, and Z. Y. Bao. 2007. Metals contamination in soils and vegetables in metal smelter contaminated sites in Huangshi, China. Bull. Environ. Contam. Toxicol., 79: 361-366. Yang J, Guo H, Ma Y, Wang L, Wei D, Hua L 2010: Genotypic variations in the accumulation of Cd exhibited by different vegetables. J. Environ. Sci., 22, 1246–1252. Yang QW, Li H, Long FY 2007: Heavy Metals of vegetables and soils of vegetable bases in Chongqing, southwest China. Environ. Monit. Assess., 130, 271–279. Yang Y, Zhang FS, Li HF, Jiang RF 2009: Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. J. Environ. Manage., 90, 1117–1122. Zhang H, Chen J, Zhu L, Yang G, Li D 2014: Transfer of Cadmium from Soil to Vegetable in the Pearl River Delta area, South China. PLoS ONE. doi:10.1371/journal.pone.0108572.
摘要: 鎘對動物或人類毒害的濃度低於作物,在作物還能正常生長的濃度下,便可能造成動物或人類健康的危害。植物的鎘吸收量除了受品種特性影響外,也受土壤性質及栽培管理影響。台灣地區由於土壤性質複雜,故鎘濃度符合土壤污染管制標準之農田,產出之食米、蔬果不符合食品重金屬限量標準的事件偶有所聞。本研究以田間栽培試驗搭配蔬菜產區調查的方式,嘗試釐清影響台灣地區蔬菜鎘安全性之主要因子,並提出適當的管理建議。研究結果顯示:在37種供試蔬菜中,食用部位鎘累積能力前5名依序為花生 > 菠菜> 莧菜 > 紅鳳菜 > 秋葵,後5名依序為苦瓜 < 胡瓜 <豇豆 <菜豆 < 球莖甘藍。多數供試蔬菜不同栽培種間鎘累積能力差異不明顯,但萵苣、結球白菜、花椰菜、芹菜、玉米、豇豆不同栽培種間鎘累積能力有明顯差異。以蔬菜類別而言,葉菜類蔬菜食用部位鎘累積能力較強,豆菜類與果菜類蔬菜鎘累積能力較弱,但同一類別中蔬菜鎘累積能力仍有差異。本研究共建立了29種蔬菜食用部位鎘濃度預測模式,模式驗證結果顯示:4種模式中以鹽酸鎘-土壤性質模式的預測準確率最高,其次為王水鎘模式與鹽酸鎘-pH-CEC模式,而鹽酸鎘模式的預測準確率最低。土壤性質中0.1M鹽酸可萃取鎘、錳、鋅濃度以及pH值、CEC均會影響蔬菜鎘濃度,其中以0.1M鹽酸可萃取鎘濃度是最主要因子,其次為土壤pH值、0.1M鹽酸可萃取錳、鋅濃度,土壤CEC的影響則較小。本研究共調查全台灣主要蔬菜產區5,023組土壤與蔬菜樣本,蔬菜鎘濃度超出限值者佔占0.4%,顯示我國主要蔬菜產區蔬菜的安全疑慮是低的。另外在鎘污染潛在風險區共調查1,254組土壤與蔬菜樣本,蔬菜鎘濃度超出限值者佔3.4%,與主要產區調查相較,這些區域的農產品安全需要特別加以關注。以本研究所建立的蔬菜鎘濃度預測模式,評估調整各項因子對蔬菜鎘安全性之影響,結果則顯示:桃園與台中地區經由提高土壤pH值至7.0即可大幅提升蔬菜鎘安全性,而彰化及宜蘭地區則除了提高土壤pH值至7.0外,針對風險較高的區域,尚需搭配選擇種植低鎘吸收蔬菜品種以提升蔬菜安全性。
The cadmium (Cd) accumulation capacity of plant depends on not only cultivars but also on soil properties and cultivation managements. However, the geological conditions and the diversity of climate in Taiwan could render rather complicated soil properties. Hence, incidents of soils with cadmium contents fulfilling the regulation levels for food crop farmland but output rice or vegetables, e. g. peanuts and garlic, not conformed to the food regulation levels of cadmium in Taiwan occurred occasionally. Field experiment coordinating with survey on vegetable production areas was conducted to clarify main impact factors on vegetable Cd safety and propose appropriate suggestions of cultivation managements. The result indicated the Cd accumulation capacity varied among the 37 vegetable species tested, and the order of the five vegetables with the highest capacities was peanut (Arachis hypogaea L.) > spinach (Spinacia oleraceae L.) > amaranth (Amaranthus tricolor L.) > gynura (Gynura bicolor DC.) > okra (Hibiscus esculentus L.), whereas the order of the five vegetables with the lowest capacities was bitter gourd (Momordica charantia L.) < cucumber (Cucumis sativus L.) < asparagus bean (Vigna unguiculata (L.) Walp. ssp. sesquipedalis (L.) Verdc.) < snap bean (Phaseolus vulgaris L.) < sponge gourd (Luffa cylindrica Roem.). Difference of Cd accumulation capacity among different cultivars of many vegetables was not significant. However, there was significant difference of Cd accumulation capacities among some cultivars of vegetables including lettuce, Chinese cabbage, cauliflower, celery, corn, and asparagus bean. As to various vegetable groups compared, edible parts of leafy vegetables were with strong Cd accumulation capacity, while legume vegetables and fruiting vegetables were weaker Cd accumulator. Soil–plant transfer prediction models of Cd in the edible parts were derived for 29 vegetable species. According to the derived models, the 0.1M hydrochloric acid extractable Cd, Mn and Zn concentrations, and pH, served as the main factors affecting Cd concentrations in the edible parts of vegetables, whereas the CEC is less important factors. To thoroughly assess Cd concentrations in vegetables and to understand the food safety of vegetables in Taiwan, 5023 vegetable samples were collected from major vegetable production areas and another 1,254 vegetable were samples collected from potentially Cd contaminated areas in Taiwan for Cd concentration analysis. The results indicated that the percentage of vegetables with Cd concentrations exceeding the regulatory concentration was merely 0.4% for major vegetable production areas, with very less concern of food safety, while that of potentially Cd contaminated areas were up to3.4%, presenting the necessary need of concern of food safety. Based on soil–plant transfer prediction models of Cd established, we also assessed the effect of adjusting soil pH and changing vegetable varieties on cadmium concentration and its safety in vegetables. The results indicated that the food safety of vegetables grown in Taoyuan and Taichung areas could greatly be ensured by managements raising soil pH up to 7.0. However, for ensuring the food safety of vegetables grown in Changhua and Ilan areas, in addition to raising soil pH up to 7.0, selecting vegetable varieties with low Cd accumulating capacity is also needed.
URI: http://hdl.handle.net/11455/96246
文章公開時間: 10000-01-01
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.