Please use this identifier to cite or link to this item:
標題: Effectiveness of Phosphate Solubilizing Bacteria Inoculation on Minimizing Chemical Fertilizer Application Rates of Maize (Zea mays L.)
作者: Chin-Sheng Ng
Burkholderia phytofirmans CC-S-L25
Rhizobium lusitanum CC-S-L19
Phosphate solubilizing bacteria
Burkholderia phytofirmans CC-S-L25
Rhizobium lusitanum CC-S-L19
Zea mays L. cv. Tainung No. 1
引用: Abril, A., J.L. Zurdo-Pineiro, A. Peix, R. Rivas, and E. Velazquez. 2007. Solubilization of phosphate by a strain of Rhizobium leguminosarum bv. Trifolii isolated from Phaseolus vulgaris in El Chaco Arido soil (Argentina). p. 135-138. In E. Velazquez and C. Rodriguez-Berrueco (ed.) Developments in plant and soil sciences. Springer, Netherlands. Adesemoye, A.O. and J.W. Kloepper. 2009. Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 85: 1-12. Afzal, A. and A. Bano. 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int. J. Agric. Biol. 10: 85-88. Afzal, A., M. Ashraf, S.A. Asad, and M. Farooq. 2005. Effect of phosphate solubilizing microorganisms on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. Int. J. Agric. Biol. 7: 207-209. Agamy, R., M. Hashem, and S. Alamri. 2013. Effect of soil amendment with yeast as biofertilizers on the growth and productivity of sugar beet. Afr. J. Agric. Res. 8: 45-56. Ahemad, M. and M. Kibret. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King Saud. Univ. Sci. 26: 1-20. Ahmad, E., A. Zaidi, M.S. Khan, and M. Oves. 2012. Heavy metal toxicity to symbiotic nitrogen fixing microorganism and host legumes. p. 29-44. In A. Zaidi et al. (ed.) Toxicity of heavy metals to legumes and bioremediation. Springer, Vienna, Austria. Alagawadi, A.R. and A.C. Gaur. 1992. Inoculation of Azospirillum brasilense and phosphate-solubilizing bacteria on yield of sorghum (Sorghum bicolor L. Moench) in dry land. Trop. Agric. 69: 347-350. Ali, S., A.R. Khan, G. Mairaj, M. Arif, M. Fida, and S. Bibi. 2008. Assessment of different crop nutrient management practices for yield improvement. Aust. J. Crop Sci. 2:150-157. Altomare, C., W.A. Norvell, T. Borjkman, and G.E. Harman. 1999. Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl. Environ. Microbiol. 65: 2926-2933. Alvarez, M.I., R.J. Sueldo, and C.A. Barassi. 1996. Effect of Azospirillum on coleoptile growth in wheat seedlings under water stress. Cereal. Res. Commun. 24: 101-107. Amruthesh, K.N., S.N. Raj, B. Kiran, H.S. Shetty, and M.S. Reddy. 2003. Growth promotion by plant growth promoting rhizobacteria in some economically important crop plants. p. 97-103. In Sixth international plant growth-promoting rhizobacteria workshop, Calicut, India. Anandham, R., G.P. Indira, M. Madhaiyan, T.M. Sa. 2008. Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate oxidizing bacteria isolated from crop plants. J. Basic Microbiol. 48: 439-447. Anderson, G. 1980. Assessing organic phosphorus in soils. p. 411-432. In F.E. Khasawneh et al. (ed.) The role of phosphorus in agriculture. Amer. Soc. Agronomy, Madison, WI, USA. Atlas, R. and R. Bartha. 1997. Microbial ecology. Addison Wesley Longman, New York, USA. Azam, F. and G.H. Memon. 1996. Soil organisms. p. 200-232. In E. Bashir E and R. Bantel (ed.) Soil science. National Book Foundation, Islamabad, Pakistan. Bajpai, P.D. and W.V.B. Sundara Rao. 1971. Phosphate solubilizing bacteria III. Soil inoculation with phosphate solubilizing bacteria. Soil Sci. Plant Nutr. 17: 46-53. Banik, S. and B.K. Dey. 1982. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing microorganisms. Plant Soil. 69: 353-364. Banik, S. and B.K. Dey. 1983. Phosphate solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source. Zentralblatt Microbiology 138:17–23. Bar-Yosef, B., R.D. Rogers, J.H. Wolfram, and E. Richman. 1999. Pseudomonas cepacia-mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Sci. Soc. Am. J. 63: 1703-1708. Barber, S.A. 1995. Soil nutrient bioavailability. A mechanistic approach, Wiley, New York, USA. Barea, J.M., E. Navare, and E. Montoya. 1976. Production of plant growth regulators by rhizosphere phosphate solubilizing bacteria. J. Appl. Bacteriol. 40: 129-134. Beaudoin, N., C. Serizet, F. Gosti, and J. Giraudat. 2000. Interaction between abscisic acid and ethylene sinaling cascades. Plant Cell. 12: 1103-1115. Beever, R.E. and D.W.J. Burns. 1980. Phosphorus uptake, storage and utilization by fungi. Adv. Bot. Res. 8: 127-219. Begon, M., J.L. Harper and C.R. Townsend. 1990. Ecology: individuals, populations and communities. 2nd ed. Blackwell Scientific Publications, USA. Belimov, A.A., A.P. Kojemiakov, and C.V. Chuvarliyeva. 1995. Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil. 173: 29-37. Ben-Dor, E. and A. Banin. 1989. Determination of organic matter content in arid-zone soils using a simple loss-on-ignition method. Commun. Soil. Sci. Plant Anal. 20: 1675-1695. Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84: 11-18. Berge, O., A. Lodhi, G. Brandelet, C. Santaella, M.A. Roncato, R. Christen, T. Heulin, and W. Achouak. 2009. Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int. J Syst. Evol. Microbiol.59: 367-372. Bhattacharyya, P.N. and D.K. Jha. 2012. Plant growth promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327-1350. Bhattacharyya, R.N. and P.S. Basu. 1992. Bioproduction of indole acetic acid by a Rhizobium sp. from root nodules of a leguminous climber, Psophocarpus tetragonolobus DC. Ind. J. Exp. BioI. 30: 632-635. Bhowmick, P.K. and P.S. Basu. 1987. Indole acetic acid production by Rhizobium sp. from a leguminous tree Sesbania grandiflora Pers. Egypt. J. Microbiol. 22: 293-301. Bolan, N.S., L.D. Currie, and S. Baskaran. 1996. Assessment of the influence of phosphate fertilizers on the microbial activity of pasture soils. Biol. Fertil. Soils. 21: 284-292. Broadbent, P., K.F. Baker, N. Franks, and J. Holland. 1977. Effect of Bacillus spp. on increased growth of seedlings in steamed and in nontreated soil. Phytopathology. 67: 1027-1034. Castagno, L.N., M.J. Estrella, A.I. Sannazzaro, A.E. Grassano, and O.A. Ruiz. 2011. Phosphate-solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). J. Appl. Microbiol. 110: 1151-1165. Cassan, F., J. Vanderleyden, and S. Spaepen. 2013. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J. Plant. Growth Regul. DOI: 10.1007/s00344-013-9362-4. Chabot, R., H. Antoun, J.W. Kloepper, and C.J. Beauchamp. 1996a. Root colonization of maize and lettuce by bioluminiscent Rhizobium leguminosarum biovar. phaseoli. Appl. Environ. Microbiol. 62: 2767-2772. Chabot, R., A. Hani, and P.M. Cescas. 1996b. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil. 184: 311-321. Chandini, T.M. and P. Dennis. 2002. Microbial activity, nutrient dynamics and litter decomposition in a Canadian Rocky Mountain pine forest as affected by N and P fertilizers. For. Ecol. Manage. 159: 187-201. Chang, C.G., C.C. Young, and E.C. Yang. 2001. The Effect of Arbuscular Mycorrhizal Fungi and Phosphate-Solubilizing Bacteria Infection on the growth of Micropropagated Waxapple Plantlet. Master Thesis. Department of Horticulture, National Chung Hsing University, Taichung, Taiwan. (in Chinese) Chang, F.P. and C.C. Young. 1992. Effects of VA mycorrhizal fungi and phosphorus-solubilizing bacteria inoculated on growth of tea cuttings in plastic bag. Taiwan Tea Res. Bull. 11: 79-89. (in Chinese) Chang, F.P. and C. C. Young. 1999. Studies on soil inoculation with P-solubilizing bacteria and P fertilizer on P-uptake and quality of tea. Soil Environ. 2: 35-44. (in Chinese) Chandra, S., K. Choure, R.C. Dubey, and D.K. Maheshwari. 2007. Rhizosphere competent Mesorhizobium loti mp6 induce root hair curling, inhibit Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz. J. Microbiol. 38: 124-130. Chattopadhyay, K.K. and P.S. Basu. 1989. Bioproduction of indole acetic acid by a Rhizobium sp. from root nodules of a leguminous tree Dalbergia sissoo Roxb. Acta. Microbiol. Polon. 38: 293-305. Chen, Y., P. Rekha, A. Arun, F. Shen, W.A. Lai, and C.C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34: 33-41. Chuang, C.C., Y.L Kuo, C.C. Chao, and W.L. Chao. 2007. Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol. Fertil. Soils. 43: 575-584. Chung, H., M. Park, M. Madhaiyan, S. Seshadri, J. Song, H. Cho, and T. Sa. 2005. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol. Biochem. 37: 1970-1974. Collavino, M.M., P.A. Sansberro, L.A. Mroginski, and O.M. Aguilar. 2010. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol. Fertil. Soils. 46: 727-738. Cordell, D., J.O. Drangert, and S. White. 2009. The story of phosphorus: global food security and food for thought. Glob. Environ. Chang. 19: 292-305. Dadhich, S.K., L.L. Somani, and D. Shilpkar. 2011. Effect of integrated use of fertilizer P, FYM and bioferlizers on soil properties and productivity of soybean-wheat crop sequence. J. Adv. Dev. Res. 2: 42-46. Datta, C. and P.S. Basu. 2000. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol. Res. 155: 123-127. Datta, M., S. Banish, and R.K. Dupta. 1982. Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland. Plant Soil. 69: 365-373. Dalal, R.C. 1977. Soil organic phosphorus. Adv. Agron. 29: 83-117. Davinson, J. 1988. Plant beneficial bacteria. Nat. Biotechnol. 6: 282-286. De Freitas, J.R., M.R. Banerjee, and J.J. Germida. 1997. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fertil. Soils. 24: 358-364. Del Campillo, S.E., S.E.A.T.M. Van der Zee, and J. Torrent. 1999. Modelling long-term phosphorous leaching and changes in phosphorous fertility in selectively fertilized acid sandy soils. Eur. J. Soil Sci. 50: 391-399. Demissie, S., D. Muleta, and G. Berecha. 2013. Effect of phosphate solubilizing bacteria on seed germination and seedling growth of faba bean (Vicia faba L.). Int. J. Agric. Res. 8: 123-136. Dey, K.B. 1988. Phosphate solubilizing organisms in improving fertility status. p. 237-248. In S.P. Sen et al. (ed.) Biofertilizers: potentialities and problems. Plant physiology forum, Naya Prokash, Calcutta, West Bengal, India. Dey, R., K.K. Pal, D.M. Bhatt, and S.M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 59: 371-394. Di-Simine, C.D., J.A. Sayer, and G.M. Gadd. 1998. Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol. Fertil. Soils. 28: 87-94. Dixon, R. and D. Kahn. 2004. Genetic regulation of biological nitrogen fixation. Nat. Rev. Microbiol. 2:621-631. Donner, S.D. and C.J. Kucharik. 2008. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc. Natl. Acad. Sci. 105: 4513-4518. Eftekhari, G., A.R. Fallah, G.A. Akbari, A. Mohaddesi, and I. Allahdadi. 2010. Effect of phosphate solubilizing bacteria and phosphate fertilizer on rice growth parameters. Iranian. J. Soil Res. 23: 2. El-Kholu, M.A., S. El-Ashry, and A.M. Gomaa. 2005. Biofertilization of maize crop and its impact on yield and grains nutrient content under low rate of mineral fertilizers. J. Appl. Sci. Res. 1: 117-121. El-Komy, H.M.A. 2005. Coimmobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition of wheat plants. Food Technol. Biotechnol. 43: 19-24. Elser, J.J. 2012. Phosphorus: a limiting nutrient for humanity? Curr. Opin. Biotechnol. 23: 833-838. Evans, M. 2012. Enhancing nutrient use efficiency. Arab Fertilizer. 63: 51-53. Faithfull, N.T. 2002. Methods in agricultural chemical analysis: A practical handbook. CABI Publishing, Wallingford, UK. Fankem, H., D. Nwaga, A. Deube, L. Dieng, W. Merbach, and F.X. Etoa. 2006. Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. Afr. J. Biotechnol. 5: 2450-2460. FAO. 2006. Fertilizer use by crop. p. 60-66. In Fertilizer and plant nutrition bulletin no. 17. Food and Agriculture Organization of the United Nation, Rome, Italy. FAO. 2014. Production: crops. FAOSTAT, Food and Agriculture Organization of the United Nation, Rome, Italy. (Online) Accessed 27 Nov. 2016. FAO, IFAD, and WFP. 2015. The State of food insecurity in the world 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. Food and Agriculture Organization of the United Nation, Rome, Italy. Fernández, C. and R. Novo. 1988. Vida Microbiana en el Suelo, II. Editorial Pueblo y Educación, La Habana, Cuba. Fernández, H.M., A.O. Carpena, and L.C. Cadakia. 1984. Evaluacion de la solubilizacion del fósforo mineral en suelos calizos por Bacillus cereus: Ensayos de invernadero. Anal. Edaf. Agrobiol. 43: 235-245. Figueiredo, M.V.B., L. Seldin, F.F. Araujo, and R.L.R. Mariano. 2011. Plant growth promoting rhizobacteria: fundamentals and applications. p. 21-42. In D.K. Maheshwari (ed.) Plant growth and health promoting bacteria. Springer, Berlin-Heidelberg, Germany. Gaind, S. and A.C. Gaur. 1989. Effects of pH on phosphate solubilization by microbes. Curr. Sci. 58: 1208-1211. Ganesan, V. 2008. Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr. Microbiol. 56: 403-407. Garg, S.K., A. Bhatnagar, A. Kalla, and N. Narula. 2001. In vitro nitrogen fixation, phosphate solubilization, survival and nutrient release by Azotobacter strains in an aquatic system. Bioresour. Technol. 80:101-109. Gaur, A.C. and K.P. Ostwal. 1972. Influence of phosphate dissolving Bacilli on yield and phosphate uptake of wheat crop. Indian J. Exp. Biol. 10: 393-394. Ghassemian, M., E. Nambare, S. Kawaide, H. Kamiya, and P. McCourt. 2000. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell. 12: 1117-1126. Ghyselinck, J., S.L. Velivelli, K. Heylen, E. O'Herlihy, and J. Franco. 2013. Bioprospecting in potato fields in the Central Andean Highlands: screening of rhizobacteria for plant growth-promoting properties. Syst. Appl. Microbiol. 36: 116-127. Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117. Glick, B.R., D.M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol. 190: 63-68. Goldstein, A.H. 1986. Bacterial solubilization of mineral phosphates: historical perspectives and future prospects. Am. J. Altern. Agricult. 1: 57-65. Goldstein, A.H. 1994. Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. p. 197-203. In A. Torriani-Gorini et al. (ed.) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, USA. Goldstein, A.H., K. Braverman, and N. Osorio. 1999. Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) bacterium. FEMS Microbiol. Ecol. 3: 295-300. Gosh, A.C. and P.S. Basu. 2002. Growth behaviour and bioproduction of indole acetic acid by a Rhizobium sp. from root nodules of leguminous tree Dalbergia lanceolaria. Indian J. Exp. Biol. 40: 796-801. Gressel, N., J.G. McColl, C.M. Preston, R.H. Newman, and R.F. Powers. 1996. Linkages between phosphorus transformations and carbon decomposition in a forest soil. Biogeochemistry. 33: 97-123. Gulati, A., P. Rahi, and P. Vyas. 2008. Characterization of phosphate-solubilizing florescent Pseudomonads from the rhizosphere of seabuckthorn growing in the cold desert of Himalayas. Curr. Microbiol. 56: 73-79. Gulati, A., P. Vyas, P. Rahi, and R.C. Kasana. 2009. Plant growth promoting and rhizosphere competent Acinetobacter rhizosphere strain BIHB 723 from the cold desert of Himalayas. Curr. Microbiol. 58: 371-377. Guo, J.H., H.Y. Qi, YH. Guo, H.L. Ge, L.Y. Gong, and L.X. Zhang. 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol. Control. 29: 66-72. Gupta, N., J. Sabat, R. Parida, and D. Kerkatta. 2007. Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines. Acta. Bot. Croat. 66: 197–204. Gyaneshwar, P., KG. Naresh, L.J. Parekh, and P.S. Poole. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil. 245: 83-93. Harley, J.L. and S.E. Smith. 1983. Mycorrhizal symbiosis. Academic Press, New York, USA. Hameed, A., M.H. Hung, S.Y. Lin, Y.H. Hsu, Y.C. Liu, M. Shahina, W.A. Lai, H.C. Huang, L.S. Young, and C.C. Young. 2013. Cohnella formosensis sp. nov., a xylanolytic bacterium isolated from the rhizosphere of Medicago sativa L. Int. J. Syst. Evol. Microbiol. 63: 2806-2812. Hameedaa, B., G. Harinib, O.P. Rupelab, S.P. Wanib, and Gopal Reddya. 2008. Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofaunal. Microbiol. Res. 163: 234-242. Hamuda, H.E.A.F.B. and I. Patko. 2010. Relationship between environmental impacts and modern agriculture. Óbuda University e-Bulletin. 1 :87-98. Harter, R.D. 2002. Acid soils of the tropics. Echo Technical Note, ECHO, USA. 48. Havlin, J., J. Beaton, S.L. Tisdale, and W. Nelson. 1999. Soil fertility and fertilizers. An introduction to nutrient management. Prentice Hall, Upper Saddle River, NJ, USA. Hwangbo, H., R.D. Park, Y.W. Kim, Y.S. Rim, K.H. Park, T.H. Kim, J.S. Such, and K.Y. Kim. 2003. 2-ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 47: 87-92. Hayat, R., S. Ali, U. Amara, R. Khalid, and I. Ahmed. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol. 60: 579-598. Hentrich, M., C. Bottcher, P. Duchting, Y. Cheng, Y. Zhao, O. Berkowitz, J. Masle, J. Medina, and S. Pollmann. 2013. The jasmonic acid signalling pathway is linked to auxin homeostasis throught the modulation of YUCCA8 and YUCCA9 gene expression. Plant J. 74: 626-637. Hilda, R. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-359. Hussein, K.A. and J.H. Joo. 2014. Potential of siderophore production by bacteria isolated from heavy metal: polluted and rhizosphere soils. Curr. Microbiol. 68: 717-723. Illmer, P. and F. Schinner. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol. Biochem. 24: 389-395. Illmer, P. and F. Schinner. 1995. Solubilization of inorganic calcium phosphate solubilization mechanisms. Soil Biol. Biochem. 27 :257-263. Imran, A., F.Y. Hafeez, A. Fruぴhling, P. Schumann, K.A. Malik, and E. Stackebrandt. 2010. Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum. Int. J. Syst. Evol. Micr. 60: 1548–1553. Isherwood, K.F. 2000. Mineral fertilizer use and the environment. International Fertilizer Industry Association/United Nations Environment Programme, Paris. Ivanchenko, M.G., S. Napsucialy-Mendivil, and J.G. Dubrovsky. 2010. Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana. Plant J. 64: 740-752. Jegathambigai, V., R.S.W. Wijeratnam, and R.L.C. Wijesundera. 2009. Trichoderma as a seed treatment to control Helminthosporium leaf spot disease of Chrysalidocarpus lutescens. World J. Agric. Sci. 5: 720-728. Jha, B.K., M.B. Pragash, J. Cletus, G. Raman, and N. Sakthivel. 2009. Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strain, P. aeruginosa, P. plecoglossicida and P. mosselii. World J. Microbiol. Biotechnol. 25: 573-581. Jiang, C., X. Sheng, M. Qian, and Q. Wang. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere. 72: 157-164. Jog, R., M. Pandya, G. Nareshkumar, and S. Rajkumar. 2014. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology. 160: 778-788. Johnson, S.E. and R.H. Loeppert. 2006. Role of organic acids in phosphate mobilization from iron oxide. Soil Sci. Soc. Am. J. 70: 222-234. Johnston, H.W. 1952. The solubilization of phosphate: the action of various organic compounds on dicalcium and tri-calcium phosphate. New Zealand J. Sci. Technol. 33: 436-444. Jones, D.A., B.F.L. Smith, M.J. Wilson, and B.A. Goodman. 1991. Solubilizator fungi of phosphate in rise soil. Mycol. Res. 95: 1090-1093. Jorquera, M.A., D.E. Crowley, P. Marschner, R. Greiner, M.T. Fernández, D. Romero, D. Menezes-Blackburn, and M. De La Luz Mora. 2011. Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus sp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol. Ecol. 75: 163-172. Kamfer, P., H.C. Scholz, B. Huber, E. Falsen, and H.J. Busse. 2007. Ochrobactrum haematophilum sp. nov. and Ochrobactrum pseudogrignonense sp. nov., isolated from human clinical specimens. Int. J. Syst. Evol. Microbiol. 57: 2513-2518. Karnwal, A. 2009. Production of indole acetic acid by fluorescent Pseudomonas in the presence of L-Tryptophan and rice root exudates. J. Plant Pathol. 91: 61-63. Kao, Y.Y. and F.T. Shen. 2014. Diversity, physiological, biochemical and plant growth promoting characteristics of facultative oligotrophs. Master Thesis. Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, Taiwan. (in Chinese) Kapanen, A. and M. Itävaara. 2001. Ecotoxicity test for compost applications. Ecotoxicol. Environ. Saf. 49: 1-16. Kavamura, V.N., S.N. Santos, J.L. Silva, M.M. Parma, and L.A. Avila. 2013. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol. Res. 168: 183-191. Keeney, D.R. and D.W. Nelson. 1982. Nitrogen-Inorganic forms. p. 643-698. In A.L. Page et al. (ed.) Methods of soil analysis, part 2, 2nd ed., 9. ASA and SSSA, Madison, WI, USA. Kennedy, I.R., A.T.M.A. Choudhury, and M.L. Kecskes. 2004. Non-symbiotic bacteria diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol. Biochem. 36: 1229-1244. Khan, A.A., G. Jilani, M.S. Akhtar, S.M.S. Naqvi, and M. Rasheed. 2009a. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1: 48-58. Khan, M.S., A. Zaidi, and E. Ahmad. 2014. Mechanism of phosphate solubilization and physiological functions of Phosphate-Solubilizing Microorganisms. p. 31-62. In M.S. Khan et al. (ed.) Phosphate solubilizing microorganisms: principles and application of microphos technology. Springer, Switzerland. Khan, M.S., A. Zaidi, and P.A. Wani. 2009b. Role of phosphate solubilizing microorganisms in sustainable agriculture. p. 552. In E. Lictfouse et al. (ed.) Sustainable agriculture. Springer, Dordrecht, Netherlands. Khan, M.S., A. Zaidi, M. Ahemad, M. Oves, and P.A. Wani. 2010. Plant growth promotion by phosphate solubilizing fungi – current perspective. Arch. Agron. Soil Sci. 56: 73-98. Khan, M.S., A. Zaidi, P.A. Wani, M. Ahemad, and M. Oves. 2009c. Functional diversity among plant growth-promoting rhizobacteria. p. 105-132. In M.S. Khan et al. (ed.) Microbial strategies for crop improvement. Springer, Berlin-Heidelberg, Germany. Khan, M.S., E. Ahmad, A. Zaidi, and M. Oves. 2013. Functional aspect of phosphate-solubilizing bacteria: importance in crop production. p. 237-265. In D.K. Maheshwari et al. (ed.) Bacteria in agrobiology: crop productivity. Springer, Berlin-Heidelberg, Germany. Khare, E. and N.K. Arora. 2010. Effect of Indole-3-Acetic Acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr. Microbiol. 61: 64–68. Kim, K.Y., G.A. McDonald, and D. Jordan. 1997. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol. Fertil. Soils. 24: 347-352. Kishore, M., Pavan K. Pindi, and S. Ram Reddy. 2015. Phosphate-solubilizing microorganisms: a critical review. p. 307-333. In B. Bahadur et al. (ed.) Plant biology and biotechnology, volumn 1: plant diversity, organization, function and improvement. Springer, New Delhi, India. Kishore, N. 2007. Formulation evaluation and mass production of multiagent bioinoculants for agroforestry tree nurseries. PhD dissertation, Kakatiya University, Warangal, India. Kishore, N., M. Ramesh, and S. Ram Reddy. 2012. Evaluation of PGPR traits of some phosphate solubilizing microorganisms associated with four agroforestry tree species. Asian J. Microbiol. Biotechnol. Environ. Sci. 14: 193-204. Kloepper, J.W. 1994. Plant growth promoting bacteria (other systems). p. 137-154. In Y. Okon (ed.) Azospirillum/Plant Association. CRC Press, Boca Raton, FL, USA. Kloepper, J.W., K. Lifshitz, and R.M. Zablotowicz. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39-43. Krishnaraj, P.U., S.P.S. Khanuja, and K.V. Sadashivam. 1998. Mineral phosphate solubilization (MPS) and mps genes-components in eco-friendly P fertilization. Indo-US Workshop on Application of Biotechnology for Clean Environment and Energy, National Institute of Advanced Studies, Bangalore, India. 27 Kucey, R.M.N., H.H. Jenzen, and M. Leggett. 1989. Microbially mediated increases in plant available phosphorus. Adv. Agron. 42: 199-228. Kumar, B. L. and D.V.R. Sai Gopal. 2015. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech. 5: 867-876. Kumar, K.V., N. Singh, H.M. Behl, and S. Srivastava. 2008. Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere. 72: 678-683. Kumar, P.R. and M.R. Ram. 2012. Production of indole acetic acid by Rhizobium isolates from Vigna trilobata (L) Verdc. Afr. J. Microbiol. Res. 6: 5536-5541. Kumar, S., P. Pandey, and D.K. Maheshwar. 2009. Reduction in dose of chemical fertilizers and growth enhancement of sesame (Sesamum indicum L.) with application of rhizosperic competent Pseudomonas aeruginosa LES4. Eur. J. Soil Biol. 45: 334-340. Kumar, V., P. Singh, and M.A. Jorquera. 2013. Isolation of phytase producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J. Microbiol. Biotechnol. 29: 1361-1369. Kumar, V., R.K. Behl, and N. Narula. 2001. Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol. Res. 156: 87-93. Kumari, M., D. Vasu, Z. Ul-Hasan, U.K. Dhurwe. 2009. Effect of PSB (Phosphate Solubilizing Bacteria) morphological on characters of Lens culinaris Medic. Med. Biol. Forum Int. J. 1: 5-7. Kundu, B.S. and A.C. Gaur. 1984. Rice responce to inoculation with N2-fixing and P-solubilizing microorganisms. Plant Soil. 79: 227-234. Leach, A.W. and J.D. Mumford. 2008. Pesticide environmental accounting: a method for assessing the external cost of individual pesticide application. Environ. Pollut. 151: 139-147. Lebuhn, M., W. Achouak, M. Schloter, O. Berge, H. Meier, M. Barakat, A. Hartmann, and T. Heulin. 2000. Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov. Int. J. Syst. Evol. Microbiol. 50: 2207-2223. Leinhos, V. and O. Vacek. 1994. Biosynthesis of auxins by phosphate solubilizing rhizobacteria from wheat (Triticum aestivum L.) and rye (Secale cerale). Microbiol. Res. 149: 31-35. Lin, S.Y., A. Hameed, Y.C. Liu, Y.H. Hsu, W.A. Lai, and C.C. Young. 2013. Pseudomonas formosensis sp. nov., a gamma-proteobacteria isolated from food-waste compost in Taiwan. Int. J. Syst. Evol. Microbiol. 63: 3168-3174. Lin, S.Y., A. Hameed, Y.C. Liu, Y.H. Hsu, W.A. Lai, H.I. Huang, and C.C. Young. 2014a. Chitinophaga taiwanensis sp. nov., isolated from the rhizosphere of Arabidopsis thaliana. Int. J. Syst. Evol. Microbiol. 64: 426-430. Lin, S.Y., M.H. Hung, A. Hameed, Y.C. Liu, Y.H Hsu, C.Z. Wen, A.B. Arun, H.J. Busse, S.P. Glaeser, P. Kämpfer and C.C. Young. 2015. Rhizobium capsici sp. nov., isolated from roottumor of a green bell pepper (Capsicum annuum var. grossum) plant. Antonie Van Leeuwenhoek. 107: 773-784. Lin, S.Y., Y.H. Hsu, Y.C. Liu, M.H. Hung, A. Hameed, W.A. Lai, W.S. Yen, and C.C. Young. 2014b. Rhizobium straminoryzae sp. nov., isolated from the surface of rice straw. Int. J. Syst. Evol. Microbiol. 64: 2962-2968. Lin, T.F. and C.C. Young. 2005. Effect of soluble phosphate in the medium on Phosphate-solubilizing activity of Burkholderia cepacia CC-A174. Taiwanese J. Agric. Chem. Food Sci. 43: 261-270. Lin, T.F., H.I. Huang, F.T. Shen, and C.C. Young. 2006. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresour. Technol. 97: 957-960. Lindsay, W.L., P.L.G. Vlek, and S.H. Chien. 1989. Phosphate minerals. p. 1089-1130. In J.B. Dixon and S.B. Weed (ed.) Minerals in soil environment. 2nd ed. Soil Science Society of America, Madison, WI, USA. Liou, R.M. and C.C. Young. 2001. Phylogenetic relationship of effective and ineffective phosphate solubilizing rhizobia analyzed by random amplified polymorphic DNA technology. Soil Environ. 3: 193-204. (in Chinese) Liou, R.M. and C.C. Young. 2002. Effects of inoculating phosphate-solubilizing rhizobia on the growth and nutrient uptakes of crops. Soil Environ. 5: 153-164. (in Chinese) Liu, Y.C., L.S. Young, S.Y. Lin, A. Hameed, Y.H. Hsu, W.A. Lai, F.T. Shen, and C.C. Young. 2013. Pseudomonas guguanensis sp. nov., a gammaproteobacterium isolated from a hot spring. Int. J. Syst. Evol. Microbiol. 63: 4591-4598. Loper, J.E. and M.N. Schroth. 1986. Influence of bacterial sources of indole-2-acetic acid on root elongation of sugar beet. Phytopathology. 76: 386–389. Lopez, B.R., Y. Bashan, and M. Bacilio. 2011. Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the Southern Sonoran Desert. Arch. Microbiol. 193: 527-541. Lopez-Lopez, A., M.A. Rogel-Hernandez, I. Barois, A.I. Ortiz Ceballos, J. Martinez, E. Ormeno-Orrillo, and E. Martinez-Romero. 2012. Rhizobium grahamii sp. nov. from Dalea leporina, Leucaena leucocephala, Clitoria ternatea nodules, and Rhizobium mesoamericanum sp. nov. from Phaseolus vulgaris, siratro, cowpea and Mimosa pudica nodules. Int. J. Syst. Evol. Microbiol. 62: 2264-2267. Louw, H.A. and D.M. Webley. 1959. A study of soil bacteria dissolving certain phosphate fertilizers and related compounds. J. Appl. Bacteriol. 22: 227–233. Luo, X.J., Z.Z. Chen, J.P. Gao, and Z.Z. Gong. 2014. Absciscis acid inhibits root growth in Arabidopsis through ethylene biosynthesis. Plant J. 79: 44-55. Ma, B., C.C. Yin, S.J. He, X. Lu, W.K. Zhang, T.G. Lu, S.Y. Chen, and J.S. Zhang. 2014. Ethylene-induced inhibition of root growth requires abscicis acid function in rice (Oryza sativa L.) seedlings. PLoS Genetics. 10. DOI: 10.1371/journal.pgen.1004701. 167. Maliha, R., K. Samina, A. Najma, A. Sadia, and L. Farooq. 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak. J. Biol. Sci. 7:187–196. Mamta, G., S. Bisht, B. Singh, A. Gulati, and R. Tewari. 2011. Enhanced biomass and steviol glycosides in Stevia rebaudiana treated with phosphate-solubilizing bacteria and rock phosphate. Plant Growth Regul. 65: 449-457. Mano, Y. and K. Nemoto. 2012. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 63: 2853-2872. McGrath, J.W., F. Hammerschmidt, J.P. Quinn. 1998. Biodegradation of phosphonomycin by Rhizobium huakuii PMY1. Appl Environ. Microbiol. 64: 356-358. McGrath, J.W., G.B. Wisdom, G. McMullan, M.J. Lrakin, and J.P. Quinn. 1995. The purification and properties of phosphonoacetate hydrolase, a novel carbon-phosphorus bond-cleaving enzyme from Pseudomonas fluorescens 23F. Eur. J. Biochem. 234: 225-230. McGill, W.B. and C.V. Cole. 1981. Comparative aspects of cycling of organic C, N, S, and P through soil organic matter. Geoderma. 26: 267-268. Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15: 1409-1416. Meng, E. and J. Ekboir. 2001. Current and future trends in maize production and trade. p. 35-44. In P.L. Pingali (ed.) 1999/2000 World maize fact and trends. Meeting world maize needs: technological opportunities and priorities for the public sector. CIMMYT, Mexico. Monib, M., I. Hosny, and Y.B. Besada. 1984. Seed inoculation of castor oil plant (Ricinus communis) and effect on nutrient uptake. Soil Biol. Conserv. Biosphere. 2: 723-732. Murphy, J.F. and GW. Zehnder. 2000. Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis. 84:779-784. Nahed, G. and A.E. Aziz. 2007. Stimulatory effect of NPK fertilizer and Benzyladenine on growth and chemical constituents of Codiacum variegatum L plant. Am. Euras. J. Agric. Environ. Sci. 2: 711-719. Naik, P.R., G. Raman, K.B. Narayanan, and N. Sakthivel. 2008. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiology 8: 230. Nakayan, P., A. Hameed, S. Singh, L.S. Young, M.H. Hung, and C.C. Young. 2013. Phosphate-solubilizing soil yeast Meyerozyma guilliermondii CC1 improves maize (Zea mays L.) productivity and minimizes requisite chemical fertilization. Plant Soil. 373: 301-315. Nannipieri, P., L. Giagnoni, L. Landi, and G. Renella. 2011. Role of phosphatase enzymes in soil. p. 251-244. In E. Bunemann et al. (ed.) Phosphorus in action: biological processes in soil phosphorus cycling, Soil biology, 26. Springer, Berlin-Heidelberg, Germany. Narula, N., B.S. Saharan, V. Kumar, R. Bhatia, L.K. Bishnoi, B.P.S. Lather, and K. Lakshminarayana. 2005. Impact of the use of biofertilizers on cotton (Gossypium hirsutum) crop under irrigated agroecosystem. Arch. Agron. Soil Sci. 51: 69-77. Narula, N., V. Kumar, R.K. Behl, A.A. Duebel, A. Gransee, and W. Merbach. 2000. Effect of P solubilizing Azotobacter chroococcum on N, P, K uptake in P responsive wheat genotypes grown under greenhouse conditions. J. Plant Nutr. Soil Sci. 163: 393-398. Naumova, A.N., E.N. Mishustin, and V.M. Marienko. 1962. On the nature of action of bacterial fertilisers (Azotobacterin, Phosphobacterin), upon agricultural crops. Bull. Acad. Sci. USSR. 5: 709-717. Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265–270. Naz, I., A. Bano, and T.U. Hassan. 2009. Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr. J. Biotechnol. 8: 5762-5766. Ngoma, L., K. Mogatlanyane, and O.O. Babalola. 2014. Screening of endophytic bacteria towards the Development of Cottage Industry: an in vitro study. J. Hum. Ecol. 47: 45-63. Norrish, K. and H. Rosser H. 1983. Mineral phosphate. p. 335-361. In Soils: an Australian viewpoint. Academic Press, Melbourne, CSIRO/London, UK, Australia. Oberhansli, T., G. Defago, D. Haas. 1991. Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHAO of Pseudomonas fluoresces: role of tryptophan side chain oxidase. J. Gen. Microbial. 137: 2273-2279. Ochoa-Loza, F.J., J.F. Artiola, and R.M. Maier. 2001. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J. Environ. Qual. 30: 479-485. Ohta, H. and T. Hattori. 1980. Bacteria sensitive to nutrient broth medium in terrestrial environments. Soil Sci. J. Plant Nutr. 26: 99-107. Ohtake, H., H. Wu, K. Imazu, Y. Ambe, J. Kato, and A. Kuroda. 1996. Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation. A Res. Conserv. and Recycling. 18: 125-134. Omar, S.A. 1998. The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microbiol. Biotechnol. 14: 211-219. Pal, S.S. 1998. Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198: 167-177. Pandey, A., P. Trivedi, and L.M.S. Palini. 2006. Characterization of phosphate solubilizing and antagonistic strain of Pseudomonas putida (BO) isolated from sub-alpine location in the Indian central Himalaya. Curr. Microbiol. 53: 102-107. Parks, E.J., G.J. Olson, F.E. Brinckman, and F. Baldi. 1990. Characterization by high performance liquid chromatography (HPLC) of the solubilization of phosphorus in iron ore by a fungus. J. Ind. Microbiol. Biotechnol. 5: 183-189. Patten, C.L. and B.R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42: 207-220. Patten, C.L. and B.R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801. Pikovskaya, R.I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology. 17: 362–370. Pilet, P.E. and M. Saugy. 1987. Effect on root growth of endogenous and applied IAA and ABA. Plant Physiol. 83: 33-38. Patil, M.G., R.Z. Sayyed, A.B. Chaudhari, and S.B. Chincholkar. 2002. Phosphate solubilizing microbes: a potential bioinoculant for efficient use of phosphate fertilizers. p. 107-118. In: S.M. Reddy (ed.) Bioinoculants for Sustainable Agriculture and Forestry. Scientific Publisher, Jodhpur, Rajasthan, India. Paul, E.A. and F.E. Clark. 1988. Soil microbiology and biochemistry. Academic Press, San Diego, California, USA. Peix, A., P.F. Mateos, C. Rodriguez-Barrueco, E. Martinez-Molina, and E. Velazquez. 2001. Growth promotion of common bean (Phaseolus vulgaris L.) by strain of Burkholderia cepacia under growth chamber conditions. Soil Biol. Biochem. 33: 1927-1935. Pilet, P.E. and R. Chollet. 1970. Sur le dosage colorime´trique de l'acide indolylace´tique. C. R. Acad. Sci. Ser. D. 271: 1675-1678. Poonguzhali, S., M. Madhaiyan, and T. Sa. 2008. Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J. Microbiol. Biotechnol. 18: 773-777. Puente, M.E., Y. Bashan, C.Y. Li, and V.K. Lebsky. 2004a. Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol. 6: 629-642. Puente, M.E., C.Y. Li, and Y. Bashan. 2004b. Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol. 6: 643-650. Puente, M.E., C.Y. Li, and Y. Bashan. 2009. Rock-degrading endophytic bacteria in cacti. Environ. Exp. Bot. 66: 389-401. Quiquampoix, H. and D. Mousain. 2005. Enzymatic hydrolysis of organic phosphorus. p. 89-112. In B.L. Turner et al. (ed.) Organic phosphorus in the environment. CAB International, Wallingford, UK. Rai, M.K. 2006. Handbook of microbial biofertilizers. The Haworth Press, Inc. Oxford, London, New York, USA. Rajan, S.S.S., J.H. Watkinson, and A.G. Sinclair. 1996. Phosphate rocks for direct application to soils. Adv. Agron. 77: 57-159. Rajapaksha, C.P. and A.P. Senanayake. 2011. Potential use of rockphosphate-solubilizing bacteria associated with wild rice as inoculants for improved rice (Oryza sativa). Arch. Agron. Soil Sci. 57: 775-788. Rajkumar, M. and H. Freitas. 2008. Effects of inoculation of plant growth promoting bacteria on Ni uptake by Indian mustard. Bioresour. Technol. 99: 3491-3498. Rane, M.R., P.D. Sarode, B.L. Chaudhari, and S.B. Chincholkar. 2008. Exploring antagonistic metabolites of established biocontrol agent of marine origin. Appl. Biochem. Biotechnol. 151: 665-675. Rayment, G.E. and F.R. Higginson. 1992. Australian laboratory handbook of soil and water chemical Methods. Nature. 435: 732-737. Reid, R.K., C.P.P. Reid, and P.J. Szaniszlo. 1985. Effects of synthetic and microbially produced chelates on the diffusion of iron and phosphorus to a simulated root in soil. Biol. Fertil. Soils. 1: 45-52. Rengel, Z. and P. Marschner. 2005. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol. 168: 305-312. Richardson, A.E. 1994. Soil microorganisms and phosphorus availability. p. 50-62. In C.E. Pankhurst et al. (ed.) Soil biota: management in sustainable farming systems. CSIRO, Victoria, Australia. Richardson, A.E. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Austr. J. Plant Physiol. 28: 897-906. Richardson, A.E. and R.J. Simpso. 2011. Soil microorganisms mediating phosphorus availability. Plant Physiol. 156: 989-996. Richardson, A.E., J.M. Barea, A.M. McNeill, and C. Prigent-Combaret. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil. 321:305-339. Richardson, A.E., P.A. Hadobas, and J.E. Hayes. 2001. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 25: 641-649. Roca, A., P. Pizarro-Tobias, Z. Udaondo, M. Fernandez, and M.A. Matilla. 2013. Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD-1. Environ. Microbiol. 15: 780-794. Rodriguez, H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339. Rodriguez, H., R. Fraga, T. Gonzalez, and Y. Bashan. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil. 287: 15-21. Roy, M. and P.S. Basu. 2004. Studies on root nodules of leguminous plants bioproduction of indole acetic acid by a Rhizobium sp. from a twiner Clitoria ternatea L. Acta. Biotechnol. 12: 453-460. Roy, R.N., A. Finck, G.J. Blair, and H.L.S. Tandon. 2006. Plant nutrition for food security: a guide for integrated nutrient management. p. 2. In FAO (ed.) Fertilizer and plant nutrition bulletin no. 16. Food and Agriculture Organization of the United Nation, Rome, Italy. Ryu, R.J. and C.L. Pattern. 2008. Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J Bacteriol. 190: 7200-7208. Saleem, M., M. Arshad, S. Hussain, and A.S. Bhatti. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34: 635-648. Sambanthamoorthy, K., R.E. Sloup, V. Parashar, J.M. Smith, and E.E. Kim. 2012. Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob. Agents Chemother. 56: 5202-5211. Saravanakumar, D., C. Vijayakumar, N. Kumar, and R. Samiyappan. 2007. PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot. 26: 556-565. Sashidhar, B. and A.R. Podile. 2010. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J. Appl. Microbiol. 109: 1-12. Schindler, D.W., R.E. Hecky, D.L. Findlay, M.P. Stainton, B.R. Parker, M.J. Paterson, K.G. Beaty, M. Lyng, and S.E.M. Kasian. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. 105: 11254-11258. Sessitsch, A., T. Coenye, A.V. Sturz, P. Vandamme, E.A. Barka, J.F. Salles, J.D. Van Elsas, D. Faure, B. Reiter, B.R. Glick, G. Wang-Pruski, and J. Nowak. 2005. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int. J. Syst. Evol. Microbiol. 55: 1187-1192. Shahab, S., N. Ahmed, and N.S. Khan. 2009. Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr. J. Agric. Res. 4: 1312-1316. Sharan, A., Shikha, and N.S. Darmwal. 2008. Efficient phosphorus solubilization by mutant strain of Xanthomonas campestris using different carbon, nitrogen and phosphorus sources. World J. Microbiol. Biotechnol. 24: 3087-3090. Sharma, K., G. Dak, A. Agrawal, M. Bhatnagar, and R. Sharma. 2007. Effect of phosphate solubilizing bacteria on the germination of Cicer arietinum seeds and seedling growth. J. Herb. Med. Toxicol. 1: 61-63. Sharma, S.B., R.Z. Sayyed, M.H. Trivedi, and T.A. Gobi. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus. 2: 587-601. Shen, F.T. and C.C. Young. 2005. Rapid detection and identification of the metabolically deverse genus Gordonia by 16S rRNA-gene-targeted genus-specific primer. FEMS Microbiol. Lett. 250: 221-227. Shreedhar, S., P.D. Rekha, K. Naregundi, C.C. Young, and A.B. Arun. 2014. Phosphate solubilizing uranium tolerant bacteria associated with monazite sand of a natural background radiation site in South-West coast of India. Ann. Microbiol. 64: 1683-1689. Siddiqui, I.A., S.E. Haque, and S.S. Shaukat. 2001. Use of rhizobacteria in the control of root rot-root knot disease complex of mungbean. J. Phytopathol. 149: 337-346. Sims, J.T. and G.M. Pierzynski. 2005. Chemistry of phosphorus in soil. p. 151-192. In A.M. Tabatabai and D.L. Sparks (ed.) Chemical processes in soil, 8. SSSA, Madison, WI, USA. Singh, H. and M.S. Reddy. 2011. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur. J. Soil Biol. 47: 30-34. Singh, P., V. Kumar, and S. Agrawal. 2014. Evaluation of phytase producing bacteria for their plant growth promoting activities. Int. J. Microbiol. 6. DOI: 10.1155/2014/426483. Song, O.R., S.J. Lee, Y.S. Lee, S.C. Lee, K.K. Kim, and Y.L. Choi. 2008. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Baraz. J. Microbiol. 39: 151–156. Sperber, J.I. 1958. Solubilization of apatite by soil microorganisms producing organic acids. Aust. J. Agr. Res. 9: 782-787. Sridevi, M., K.V. Mallaiah, and N.C.S. Yadav. 2007. Phosphate solubilization by Rhizobium isolates from Crotalaria species. J. Plant Sci. 2: 635-639. Stajner, D., S. Kevreaan, O. Gasaic, N. Mimica-Dudic, and H. Zongli. 1997. Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biol. Plant. 39: 441-445. Stanley P. Burg. 1973. Ethylene in plant growth. Proc. Nat. Acad. Sci. 70: 591-597. Su, C.H., L.J. Hung, and C.C. Young. 2000. Effects of different organic materials on nitrogen fixing bacteria and phosphate solubilizing bacteria in soil. Taiwanese J. Agric. Chem. Food Sci. 38: 424-432. (in Chinese) Subba Rao, N.S. 1982. Biofertilizer in agriculture. 2nd ed. Oxford and IBH Publishing, New Delhi, India. Sundara Rao, W.V.B. and M.K. Sinha. 1963. Phosphate dissolving organisms in the soil and the rhizosphere. Indian J. Agr. Sci. 33: 272-278. Suslov, T.V. 1982. Role of root-colonizing bacteria in plant growth. p. 187-223. In M.S. Mount et al. (ed.) Phytopathogenic prokariotes. Academic Press, London. Swaby, R. and J.I. Sperber. 1958. Phosphate dissolving microorganisms in the rhizosphere of legume. p. 289-294. In E.G. Hallworth (ed.) Nutrition of the legumes: proceedings of the fifth easter school in agricultural science. Butterworths Scientific Publications, London, UK. Swaby, R. J. and Sperber, J. I., in Nutrition of the Legumes, Academic Press, New York, 1958, p. 289. Tabatabai, M.A. 1994. Soil enzymes p. 775-833. In R.W. Weaver et al. (ed.) Methods of soil analysis, part 2, 5. SSSA, Madison, WI, USA. Taha, S.M., S.A.Z. Mahmoud, A.A. El-Damaty, and A.M. Abd El-Hafez. 1969. Activity of phosphate dissolving bacteria in Egyptian soil. Plant Soil. 31: 149. Tewari, S.K., B. Das, and S. Mehrotra. 2004. Cultivation of medicinal plants—tool for rural development. J. Rural. Tech. 3: 147-150. Tilak, K.V.B.R., N. Ranganayaki, K.K. Pal, R. De, A.K. Saxena, C.S. Nautiyal, S. Mittal, A.K. Tripathi, and B.N. Johri. 2005. Diversity of plant growth and soil health supporting bacteria. Curr. Sci. 89: 136-150. Tilman, D. 1998. The greening of the green revolution. Nature. 396: 211-221. Trolove, S.N., M.J. Hedley, G.J.D. Kirk, N.S. Bolan, and P. Loganathan. 2003. Progress in selected areas of rhizosphere research on P acquisition. Aust. J. Soil Res. 41: 471-499. Turan, M., N. Ataoğlu, and F. Şahιn. 2006. Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture. J. Sustain. Agr. 28: 99-108. United Nations. 2015. World population prospects: the 2015 revision, key findings and advance table. Department of Economic and Social Affairs, Population Division, New York, USA. Valverde, A., J.M. Igual, A. Peix, E. Cervantes, and E. Velazquez. 2006. Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int. J. Syst. Evol. Microbiol. 56: 2631-2637. Vassilev, N. and M. Vassileva. 2003. Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Appl. Microbiol. Biotechnol. 61: 435-440. Vassilev, N., M. Vassileva, and I. Nikolaeva. 2006. Stimultaneous P-solubilizing and biocontrol activity of microorganisms: Potentials and future trends. Applied Microbiol. Biotechnol. 71: 137-144. Vazquez, P., G. Holguin, M. Puente, A. Lopez-cortes, and Y. Bashan. 2000. Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi-arid coastal lagoon. Biol. Fertil. Soils. 30: 460-468. Venkateswarlu, B., A.V. Rao, P. Raina, and N. Ahmad. 1984. Evaluation of phosphorus solubilization by microorganisms isolated from arid soil. J. Indian Soc. Soil Sci. 32: 273-277. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255: 571-586. Vincent, J.M. 1970. A manual for the practical study of the root-nodule bacteria. In International biological programme handbook. 15th ed. J. Basic Microbiol. Blackwell Scientific, London, UK. Vyas, P. and A. Gulati. 2009. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9:174. Wani, P.A., A. Zaidi, A.A. Khan, and M.S. Khan. 2005. Effect of phorate on phosphate solubilization and indole acetic acid (IAA) releasing potentials of rhizospheric microorganisms. Annals Plant Protection Sci. 13: 139-144. Watanabe, F.S. and S.R. Olsen. 1965. Test of an ascorbic acid method for determining P in water and sodium bicarbonate extracts from soil. Soil Sci. Soc. Amer. Proc. 29: 677-678. Whitelaw, M.A. 2000. Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv. Agron. 69: 99-151. Xie, H., J. Pastenmak, and B.R. Glick. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr. Microbiol. 32: 67-71. Xu, S., Y. Liu, J.J. Wang, T.T. Yin, Y.F. Han, X.B. Wang, and Z.Y. Huang. 2015. Isolation and potential of Ochrobactrum sp. NW-3 to increase the growth of cucumber. Int. J. Agr. Pol. Res. 3: 341-350. Yadav, J., J.P. Verma, and K.N. Tiwari. 2010. Effect of plant growth promoting rhizobacteria on seed germination and plant growth chickpea (Cicer arietinum L.) under in vitro conditions. Biol. Forum Int. J. 2: 15-18. Yadav, K.S. and K.R. Dadarwal. 1997. Phosphate solubilization and mobilization through soil microorganisms. p. 293-308. In K.R. Dadarwal (ed.) Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific Publishers, Jodhpur, India. Yi, Y., W. Huang, and G. Ying. 2008. Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J. Microbiol. Biotechnol. 24: 1059-1065. Young, C.C. 1990. Effects of phosphorus-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the growth of tree species in subtropical-tropical soil. Soil Sci. Plant Nutr. 36: 225-231. Young, C.C. 1994. Selection and application of biofertilizers in Taiwan. Food Fert. Technol. Center. Tech. Bull. 141: 1-9. Young, C.C. and H.S. Chen. 1999. Genetic diversity of calcium phosphate-solubilizing bacteria determined by random amplified polymorphic DNA analysis. Soil Environ. 2: 147-158. (in Chinese) Young, C.C., C.H. Chang, L.F. Chen, and C.C. Chao. 1998a. Studies on the properties of nitrogen fixing and ferric phosphate solubilizing bacteria isolated from Taiwan soil. J. Chinese Agric. Chem. Soc. 36: 201-210. (in Chinese) Young, C.C., L.J. Hung, and L. F. Chen. 1998b. Studies on the exudate and characteristics of P-solubilization with P-solubilizing rhizobia for four green manures. Soil Environ. 1: 7-17. (in Chinese) Young, C.C., M.H. Hung, J.H. Lin, J.L. Lin, and X.R. Huang. 2013. Cohnella formosensis and application thereof CN 103343103 A. CN 201310283146. China. Young, C.C., Z.Q. Huang, and D.F. Lin. 2000. Studies on properties of solubilizing tri-calcium phosphate of Pseudomonas cepacia Al-74 strain. J. Agric. Assoc. China. 1: 150-158. (in Chinese) Young, L.S., A. Hameed, S.Y. Peng, Y.H. Shan, and S.P. Wu. 2013. Endophytic establishment of the soil isolate Burkholderia sp. CC-Al74 enhances growth and P-utilization rate in maize (Zea mays L.). Appl. Soil Ecol. 66: 40-47. Zahir, Z.A., M. Arshad, and W.T. Frankenberger. 2004. Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv. Agron. 81: 96-168. Zaidi, A., M.S. Khan, M. Ahemad, and M. Oves. 2009a. Plant growth promotion by phosphate solubilizing bacteria. Acta. Microbiol. Immunol. Hung. 56: 263-284. Zaidi, A., M.S. Khan, M. Ahemad, M. Oves, and P.A. Wani. 2009b. Recent advances in plant growth promotion by phosphate-solubilizing microbes. p. 23-50. In M.S. Khan et al. (ed.) Microbial strategies for crop improvement. Springer, Berlin-Heidelberg, Germany. Zarabi, M., I. Alahdadi, and G.A. Akbari. 2011. A study on the effects of different biofertilizer combinations on yield, its components and groth indices of corn (Zea mays L.) under drought stress condition. Afr. J. Agric. Res. 6: 681-685. Zhao, K., P. Pentinen, X. Zhang, X. Ao, M. Liu, X. Yu, and Q. Chen. 2014 Maize rhizophere in Sichuan, China, host plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol. Res. 169: 76-82. Zhou, K., D. Binkley D, and K.G. Doxtader. 1992. A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant Soil. 147: 243-250. Zúñiga, A., M. J. Poupin, R. Donoso, T. Ledger, N. Guiliani, R.A. Gutiérrez, and B. González. 2013. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol. Plant Microbe. Interact. 26: 546-53.
摘要: 現今的耕種面積下所生產的農作物已無法滿足全球人口爆增後所需的食物。多年來,人們為了生產更多的糧食而盲目的過量使用化學肥料以應對糧食不足的危機。不料,許多研究數據顯示過量的使用化學肥料,會帶來了嚴重的環境污染和土壤劣化的問題,最終反而導致農業生產量大幅度的降低。因此,本研究透過接種溶磷菌於玉米台農一號並配合化學肥料減量之處理,探討其對植物生長及養分吸收的影響。從楊秋忠院士菌種庫中挑選非病原性之微生物進行磷酸溶解能力測試篩選後,取得12株有效菌株,其中包含6株新種微生物。此12株有效菌株皆未曾被發表具有溶磷特性,其中菌屬Chitinophaga,Cohnella和Ochrobactrum更是首次被發現擁有此特性。針對這些菌株進行各形態之固定性磷的溶解能力,吲哚-3-乙酸 (indole-3-acetic acid, IAA) 的生產能力,酸鹼度的改變能力,及種子發芽生物分析試驗的分析,篩選出高潛力的菌株Burkholderia phytofirmans CC-S-L25及Rhizobium lusitanum CC-S-L19延續溫室盆栽試驗。試驗數據顯示,菌株B. phytofirmans CC-S-L25具有磷酸鈣,磷酸鋁和磷酸鐵的溶解能力、色氨酸 (tryptophan, Trp) 依賴性IAA生物合成能力、降低酸鹼度的能力及促進胚芽和胚根的生長能力。菌株R. lusitanum CC-S-L19具有磷酸鈣和磷酸鐵的溶解能力、色氨酸依賴性和非依賴性IAA生物合成能力、降低酸鹼度的能力及促進胚芽和胚根的生長能力。在溫室盆栽試驗中,將此兩株溶磷菌接種至玉米台農一號28天後發現,無論接種B. phytofirmans CC-S-L25或R. lusitanum CC-S-L19配合半量施肥之處理,皆可超越單獨施用全量化學肥料之處理的植體株高,葉片數量,鮮重及乾重。在植體分析的結果上 ,氮、磷、鈣、鎂、錳、鋅、銅之含量在接種B. phytofirmans CC-S-L25配合半量施肥之處理,顯著的比全量化學肥料之處理高,且鉀、鐵、硼之含量也不比全量化學肥料之處理差;然而,在R. lusitanum CC-S-L19配合半量施肥之處理下,磷、鈣、鎂之含量顯著的比全量化學肥料之處理高,且氮、錳、鋅、硼之含量與全量化學肥料之處理相等。綜合以上所有試驗之結果,溶磷菌B. phytofirmans CC-S-L25及R. lusitanum CC-S-L19具有植物生長促進之效果,且可以大量減少玉米化學肥量施用量。因此,接種溶磷菌B. phytofirmans CC-S-L25及R. lusitanum CC-S-L19不但可以加強農業管理免於化學肥料之濫用,還可以促進永續農業之發展。
Nowadays, the agricultural productions are no longer sufficient to feed the world's population. Over the years, people excessive application of chemical fertilizer in order to increase agricultural production to cope with the food crisis. Unfortunately, several research showed that excessive use of chemical fertilizer will cause the deterioration of environmental pollution and soil quality, and lead to significant reduction in agricultural production eventually. This study was therefore undertaken to investigate the efficiency and characteristic of PSBs and evaluate their plant growth promoting activities to maize (Zea mays L. cv. Tainung No. 1) cultivation under greenhouse conditions, while achieving the purpose of minimization on chemical fertilizer application rate at the same time. First, sceening phosphate solubilizing bacteria (PSBs) from Prof. Young's microbial library, a total 12 potential non-pathogenic microorganisms were selected, which including 6 novel species. None of them has yet been reported as PSBs in any scientific journals, and we also found that Chitinophaga, Cohnella, and Ochrobactrum are the novel genus of PSBs from this research study. The abilities of phosphates solubilization, indole-3-acetic acid (IAA) production, alteration of pH, and seed germination bioassays were analyzed, and Burkholderia phytofirmans CC-S-L25 and Rhizobium lusitanum CC-S-L19 showing extraordinary performance, which were chosen as bioinoculant for greenhouse experiment. Data showed that B. phytofirmans CC-S-L25 has abilities to solubilize calcium-phosphate, aluminum-phosphate, and iron-phosphate; tryptophan-dependent IAA biosynthesis capability; pH acidification; hypocotyl and root growth promoting. While, R. lusitanum CC-S-L19 has calcium-phosphate and iron-phosphate solubilizing abilities; tryptophan-dependent and tryptophan-independent IAA biosynthesis capability; pH acidification; hypocotyl and root growth promoting. Plant height, leaf numbers, fresh weight, and dry weight of maize were significantly increased compare to 100% chemical fertilizer (CF) treatment no matter in case of 50% CF + B. phytofirmans CC-S-L25 or 50% CF + R. lusitanum CC-S-L19 treatments under greenhouse experiments. Regarding plant analysis, 50% CF + B. phytofirmans CC-S-L25 treatment was able to increase the uptake of N, P, Ca, Mg, Mn, Zn, and Cu compared to 100% CF treatment, and the performance of K-, Fe-, and B-uptake as good as 100% CF treatment. On the other hand, 50% CF + R. lusitanum CC-S-L19 treatment was able to increase the uptake of P, Ca, and Mg compared to 100% CF treatment, and the performance of N-, Mn-, Zn-, and B-uptake as good as 100% CF treatment. Based on the results, B. phytofirmans CC-S-L25 and R. lusitanum CC-S-L19 obviously has the plant growth promotion of maize, simultaneously, could significantly minimize the application of chemical fertilizer. Therefore, the inoculation of B. phytofirmans CC-S-L25 and R. lusitanum CC-S-L19 not only give a hand to reduce environmental pollution, but also promoting the development of sustainable agriculture.
文章公開時間: 2018-01-09
Appears in Collections:土壤環境科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.