Please use this identifier to cite or link to this item:
標題: (1)Sequential Dy(OTf)3-catalyzed solvent free per-O-acetylation and anomeric de-O-acetylation of carbohydrates (2)2-(acetylsulfanyl)methyl benzoate: Lanthanide(III) metal-catalyzed removable orthogonal protecting group of carbohydrates
(1)利用三氟甲烷磺酸鏑催化醣類分子之乙醯化及一鍋化合成乙醯基化半縮醛之開發 (2)利用三價鑭系金屬催化醣類分子正交性保護基之設計
作者: Yi-Ling Yan
關鍵字: 三價鑭系金屬
lanthanide(III) metal
anomeric de-O-acetylation
one-pot reaction
orthogonal protecting group
引用: 1. Bauchop, T.; Elsden, S., The growth of micro-organisms in relation to  their energy supply. Microbiol. 1960, 23, 457-469. 2. Seeberger, P. H.; Werz, D. B., Automated synthesis of oligosaccharides as a basis for drug discovery. Nat. Rev. Drug. Discov. 2005, 4, 751-63. 3. Bertozzi, C. R.; Kiessling, L. L., Chemical glycobiology. Science 2001, 291, 2357-2364. 4. Postma, P.; Lengeler, J.; Jacobson, G., Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 1993, 57, 543-594. 5. Feng, D.; Shaikh, A. S.; Wang, F., Recent Advance in Tumor-associated Carbohydrate Antigens (TACAs)-based Antitumor Vaccines. ACS Chem. Biol. 2016, 11, 850-63. 6. Zhu, X.; Schmidt, R. R., New principles for glycoside-bond formation. Angew. Chem. Int. Ed. 2009, 48, 1900-1934. 7. Yu, B.; Xie, J.; Deng, S.; Hui, Y., First synthesis of a bidesmosidic triterpene saponin by a highly efficient procedure. J. Am. Chem. Soc. 1999, 121, 12196-12197. 8. Wang, L. X.; Davis, B. G., Realizing the Promise of Chemical Glycobiology. Chem. Sci. 2013, 4, 3381-3394. 9. Furniss, B. S., Vogel's textbook of practical organic chemistry. 5 ed.; Pearson Education India: 1989. 10. Tiwari, P.; Kumar, R.; Maulik, P. R.; Misra, A. K., Efficient Acetylation of Carbohydrates Promoted by Imidazole. Eur. J. Org. Chem. 2005, 20, 4265-4270. 11. Ch, R.; Tyagi, M.; Patil, P. R.; Ravindranathan Kartha, K. P., DABCO: an efficient promoter for the acetylation of carbohydrates and other substances under solvent-free conditions. Tetrahedron Lett. 2011, 52, 5841-5846. 12. Dasgupta, F.; Singh, P. P.; Srivastava, H. C., Acetylation of carbohydrates using ferric chloride in acetic anhydride. Carbohydr. Res. 1980, 80, 346-349. 13. Abbott, A. P.; Bell, T. J.; Handa, S.; Stoddart, B., O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid. Green Chem. 2005, 7, 705-707. 14. Tai, C.-A.; Kulkarni, S. S.; Hung, S.-C., Facile Cu(OTf)2-catalyzed preparation of per-O-acetylated hexopyranoses with stoichiometric acetic anhydride and sequential one-pot anomeric substitution to thioglycosides under solvent-free conditions. J. Org. Chem. 2003, 68, 8719-8722. 15. Bizier, N. P.; Atkins, S. R.; Helland, L. C.; Colvin, S. F.; Twitchell, J. R.; Cloninger, M. J., Indium triflate catalyzed peracetylation of carbohydrates. Carbohydr. Res. 2008, 343, 1814-1818. 16. Lee, J.-C.; Tai, C.-A.; Hung, S.-C., Sc(OTf)3-catalyzed acetolysis of 1, 6-anhydro-β-hexopyranoses and solvent-free per-acetylation of hexoses. Tetrahedron Lett. 2002, 43, 851-855. 17. Bartoli, G.; Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Nardi, M.; Procopio, A.; Tagarelli, A., Per-O-acetylation of sugars catalyzed by Ce(OTf)3. Green Chem. 2004, 6, 191-192. 18. Lu, K.-C.; Hsieh, S.-Y.; Patkar, L. N.; Chen, C.-T.; Lin, C.-C., Simple and efficient per-O-acetylation of carbohydrates by lithium perchlorate catalyst. Tetrahedron 2004, 60, 8967-8973. 19. Chen, C.-T.; Kuo, J.-H.; Li, C.-H.; Barhate, N.; Hon, S.-W.; Li, T.-W.; Chao, S.-D.; Liu, C.-C.; Li, Y.-C.; Chang, I.-H., Catalytic nucleophilic acyl substitution of anhydrides by amphoteric vanadyl triflate. Org. Lett. 2001, 3, 3729-3732. 20. Agnihotri, G.; Tiwari, P.; Misra, A. K., One-pot synthesis of per-O-acetylated thioglycosides from unprotected reducing sugars. Carbohydr. Res. 2005, 340, 1393-1396. 21. Chatterjee, D.; Paul, A.; Rajkamal, R.; Yadav, S., Cu(ClO4)2.6H2O catalyzed solvent free per-O-acetylation and sequential one-pot conversions of sugars to thioglycosides. RSC Adv. 2015, 5, 29669–29674. 22. Lin, T.-W.; Adak, A. K.; Lin, H.-J.; Das, A.; Hsiao, W.-C.; Kuan, T.-C.; Lin, C.-C., Tetranuclear zinc cluster: a dual purpose catalyst for per-O-acetylation and de-O-acetylation of carbohydrates. RSC Adv. 2016, 6, 58749-58754. 23. Binch, H.; Stangier, K.; Thiem, J., Chemical synthesis of GDP-L-galactose and analogues. Carbohydr. Res. 1998, 306, 409-419. 24. Hyatt, J.; Tindall, G., The intermediacy of sulfate esters in sulfuric acid catalyzed acetylation of carbohydrates. Heterocycles 1993, 35, 227-234. 25. Chao, C. S.; Chen, M. C.; Lin, S. C.; Mong, K. K., Versatile acetylation of carbohydrate substrates with bench-top sulfonic acids and application to one-pot syntheses of peracetylated thioglycosides. Carbohydr. Res. 2008, 343, 957-964. 26. Li, A.-X.; Li, T.-S.; Ding, T.-H., Montmorillonite K-10 and KSF as remarkable acetylationcatalysts. Chem. Commun. 1997, 15, 1389-1390. 27. Bhaskar, P. M.; Loganathan, D., H-Beta zeolite as an efficient catalyst for per-O-acetylation of mono-and disaccharides. Synlett 1999, 1, 129-131. 28. Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O.; Rossi, M., Heterogeneous Catalysis in Acetylation of Alcohols and Phenols Promoted by Zirconium Sulfophenyl Phosphonate. Synth. Commun. 2007, 30, 1319-1329. 29. Wu, L.; Yin, Z., Sulfonic acid functionalized nano gamma-Al2O3 catalyzed per-O-acetylated of carbohydrates. Carbohydr. Res. 2013, 365, 14-19. 30. Cai, L.; Rufty, C.; Liquois, M., Solvent-Free Per-O-acetylation of Carbohydrates. Asian J. Chem. 2014, 26, 4367-4369. 31. Forsyth, S. A.; MacFarlane, D. R.; Thomson, R. J.; von Itzstein, M., Rapid, clean, and mild O-acetylation of alcohols and carbohydrates in an ionic liquid. Chem. Commun. 2002, 7, 714-715. 32. Murugesan, S.; Karst, N.; Islam, T.; Wiencek, J. M.; Linhardt, R. J., Dialkyl imidazolium benzoates-room temperature ionic liquids useful in the peracetylation and perbenzoylation of simple and sulfated saccharides. Synlett. 2003, 9, 1283-1286. 33. Dasgupta‡, S.; Rajput‡, V. K.; Roy, B.; Mukhopadhyay, B., Lanthanum Trifluoromethane-sulfonate‐Catalyzed Facile Synthesis of Per‐O-acetylated Sugars and Their One‐Pot Conversion to S‐Aryl and O‐Alkyl/Aryl Glycosides†. J. Carbohydr. Chem. 2007, 26, 91-106. 34. Dmitriev, B. A.; Knirel, Y. A.; Kochetkov, N. K., Selective cleavage of glycosidic linkages: studies with the O-specific polysaccharide from Shigella dysenteriae type 3. Carbohydr. Res. 1975, 40, 365-372. 35. Nudelman, A.; Herzig, J.; Gottlieb, H. E.; Keinan, E.; Sterling, J., Selective deacetylation of anomeric sugar acetates with tin alkoxides. Carbohydr. Res. 1987, 162, 145-152. 36. Banaszek, A.; Cornet, X. B.; Zamojski, A., A new, efficient method for hydrolysis of the anomeric acetyl group in substituted hexopyranoses. Carbohydr. Res. 1985, 144, 342-345. 37. Dilhas, A.; Bonnaffé, D., PhBCl2 promoted reductive opening of 2',4'-O-p-methoxybenzylidene: new regioselective differentiation of position 2' and 4' of α-l-iduronyl moieties in disaccharide building blocks. Tetrahedron Lett. 2004, 45, 3643-3645. 38. Kaya, E.; Sonmez, F.; Kucukislamoglu, M.; Nebioglu, M., Selective anomeric deacetylation using zinc acetate as catalyst. Chem. Pap. 2012, 66, 312-315. 39. Tiwari, P.; Misra, A. K., Selective removal of anomeric O-acetate groups in carbohydrates using HClO4–SiO2. Tetrahedron Lett. 2006, 47, 3573-3576. 40. Wei, G.; Zhang, L.; Cai, C.; Cheng, S.; Du, Y., Selective cleavage of sugar anomeric O-acyl groups using FeCl3•6H2O. Tetrahedron Lett. 2008, 49, 5488-5491. 41. Tran, A. T.; Deydier, S.; Bonnaffé, D.; Le Narvor, C., Regioselective green anomeric deacetylation catalyzed by lanthanide triflates. Tetrahedron Lett. 2008, 49, 2163-2165. 42. Andersen, S. M.; Heuckendorff, M.; Jensen, H. H., 3-(Dimethylamino)-1-propylamine: a cheap and versatile reagent for removal of byproducts in carbohydrate chemistry. Org. Lett. 2015, 17, 944-947. 43. Cai, T. B.; Lu, D.; Tang, X.; Zhang, Y.; Landerholm, M.; Wang, P. G., New glycosidase activated nitric oxide donors: glycose and 3-morphorlinosydnonimine conjugates. J. Org. Chem. 2005, 70, 3518-3524. 44. Holmberg, R. J.; Kuo, C.-J.; Gabidullin, B.; Wang, C.-W.; Clérac, R.; Murugesu, M.; Lin, P.-H., A propeller-shaped μ 4-carbonate hexanuclear dysprosium complex with a high energetic barrier to magnetisation relaxation. Dalton Trans. 2016, 45, 16769-16773. 45. Pinho, S. S.; Reis, C. A., Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer. 2015, 15, 540-555. 46. Monzavi-Karbassi, B.; Pashov, A.; Kieber-Emmons, T., Tumor-Associated Glycans and Immune Surveillance. Vaccines 2013, 1, 174-203. 47. Restifo, N. P.; Dudley, M. E.; Rosenberg, S. A., Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 2012, 12, 269-281. 48. Slovin, S.; Ragupathi, G.; Adluri, S.; Ungers, G.; Terry, K.; Kim, S.; Spassova, M.; Bornmann, W.; Fazzari, M.; Dantis, L., Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. PNAS 1999, 96, 5710-5715. 49. Ravindranath, M. H.; Muthugounder, S.; Presser, N.; Ye, X.; Brosman, S.; Morton, D. L., Endogenous immune response to gangliosides in patients with confined prostate cancer. Int. J. Cancer 2005, 116, 368-377. 50. Schelhaas, M.; Waldmann, H., Protecting group strategies in organic synthesis. Angew. Chem. Int. Ed. 1996, 35, 2056-2083. 51. Ágoston, K.; Streicher, H.; Fügedi, P., Orthogonal protecting group strategies in carbohydrate chemistry. Tetrahedron: Asymmetry 2016, 27, 707-728. 52. Kusumoto, S.; Sakai, K.; Shiba, T., 4-Azidobutyryl group for temporary protection of hydroxyl functions. Bull. Chem. Soc. Jpn. 1986, 59, 1296-1298. 53. Xu, J.; Guo, Z., (2-Azidomethyl) phenylacetyl as a new, reductively cleavable protecting group for hydroxyl groups in carbohydrate synthesis. Carbohydr. Res. 2002, 337, 87-91. 54. Li, Y.; Liu, X., Tunable acid-sensitive ester protecting groups in oligosaccharide synthesis. Chem. Commun. 2014, 50, 3155-3158. 55. Ali, A.; van den Berg, R. J. B. H. N.; Overkleeft, H. S.; Filippov, D. V.; van der Marel, G. A.; Codée, J. D. C., Methylsulfonylethoxycarbonyl (Msc) and fluorous propylsulfonylethoxycarbonyl (FPsc) as hydroxy-protecting groups in carbohydrate chemistry. Tetrahedron Lett. 2009, 50, 2185-2188. 56. Akai, S.; Tanaka, R.; Hoshi, H.; Sato, K., Selective deprotection method of N-phenylcarbamoyl group. J. Org. Chem. 2013, 78, 8802-8808. 57. Sridhar, P. R.; Chandrasekaran, S., Propargyloxycarbonyl (Poc) as a protective group for the hydroxyl function in carbohydrate synthesis. Org. Lett. 2002, 4, 4731-4733. 58. Crich, D.; Li, L.; Shirai, M., The 4-(tert-Butyldiphenylsiloxy)-3-fluorobenzyl Group: A New Alcohol Protecting Group, Fully Orthogonal with the p-Methoxybenzyl Group and Removable under Desilylation Conditions. J. Org. Chem. 2009, 74, 2486-2493. 59. Muramatsu, W.; Mishiro, K.; Ueda, Y.; Furuta, T.; Kawabata, T., Perfectly Regioselective and Sequential Protection of Glucopyranosides. Eur. J. Org. Chem. 2010, 5, 827-831. 60. Castelli, R.; Overkleeft, H. S.; van der Marel, G. A.; Codée, J. D., 2, 2-Dimethyl-4-(4-methoxy-phenoxy) butanoate and 2, 2-Dimethyl-4-azido Butanoate: Two New Pivaloate-ester-like Protecting Groups. Org. Lett. 2013, 15, 2270-2273. 61. Zeng, N.; Niu, Y.; Ye, X.-S., 3-Butenyloxycarbonyl as a new hydroxyl protecting group in carbohydrate synthesis. Tetrahedron Lett. 2016, 57, 2935-2938. 62. Daragics, K.; Fügedi, P. t., (2-Nitrophenyl) acetyl: A New, Selectively Removable Hydroxyl Protecting Group. Org. Lett. 2010, 12, 2076-2079.
摘要: In the first part of this thesis, we reported dysprosium(III) trifluoromethanesulfonatecatalyzed per-O-acetylation and regioselective anomeric de-O-acetylation of carbohydrates can be tuned by adjusting the reaction medium. In this study, per-O-acetylation of unprotected sugars by using a near stoichiometric amount of acetic anhydride under solvent-free conditions resulted in the exclusive formation of acetylated saccharides as anomeric mixtures, whereas anomeric de-O-acetylation in methanol resulted in a moderate to excellent yield. Reactions with various unprotected monosaccharides followed by a semi-one-pot sequential conversion into the corresponding acetylated glycosyl hemiacetal also resulted in high yields. Furthermore, the obtained hemiacetals could be successfully transformed into trichloroimidates following Dy(OTf)3-catalyzed glycosylation. The second part of this thesis, we developed the (2-acetylsulfanyl) methyl benzoic acid (ASMB) as a new orthogonal protecting group for carbohydrates. The ASMB group is readily prepared starting from the commercially available, inexpensive 2-methylbenzoic acid. The ASMB group can be selectively removed using ytterbium(III) trifluoromethanesulfonate without affecting a series of common protecting groups. This new protecting group is orthogonal with the commonly used benzoyl, benzyl, Troc, p-methoxybenzyl, tert-butyldimethylsilyl and acetal groups.
本篇論文的第一部分,是利用三氟甲烷磺酸鏑在不同之反應環境下對醣類分子進行乙醯化反應及選擇性移去變旋異構中心乙醯基反應。在本研究中,反應條件是以劑量乙酸酐在無溶劑條件下對未保護之醣類分子進行全乙醯基化。而在甲醇條件下可將其選擇性移去變旋異構中心之乙醯基,且有良好之產率。最後發展以連續性一鍋化之方式將未保護之醣體轉為乙醯基化半縮醛,甚至更進一步以三氟甲烷磺酸鏑催化醣基化反應。   而本篇論文之第二部分,是引入一(2-acetylsulfanyl)methyl benzoic acid (ASMB) 基團作為醣類分子之正交性保護基。在本研究中,是利用三氟甲烷磺酸鐿催化選擇性移去ASMB保護基。其原理是藉由先選擇性去除硫乙醯基而露出硫醇之親核性基團,進而誘導其進行分子內合環反應,形成穩定的硫代內酯,而將此ASMB保護基去除。除此之外,我們並嘗試在醣類分子結構中引入一些常見之保護基,例如苯甲醯基、苄基、Troc、對甲苯甲氧基、叔丁基二甲基矽基及縮醛等,並在此催化條件下進行選擇性去保護反應,由結果顯示,大部分之常見保護基並不會影響,證明此ASMB保護基具有正交性之特性。
文章公開時間: 2020-08-28
Appears in Collections:化學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.