Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96263
標題: The Study of Electronic Structures of Five-coordinate Saddled Iron(III) Porphyrin Radical Cation and O-O Bond Homolytic Cleavage of (OETPP)FeIIIO(H)OtBu
五配位三價馬鞍型鐵卟啉陽離子自由基之電子組態及過氧化物配位後之氧-氧鍵均相斷鍵模型研究
作者: Yi-Wen Wu
吳翌彣
關鍵字: 鐵卟啉
馬鞍型卟啉
均相斷鍵
iron porphyrin
saddled porphyrin
homolytic cleavage
引用: 1. E. A. Brucker, J. S. Olson, G. N. Phillips, Y. Dou and M. IkedaSaito, J Biol Chem, 1996, 271, 25419-25422. 2. R. Liddington, Z. Derewenda, E. Dodson, R. Hubbard and G. Dodson, Journal of Molecular Biology, 1992, 228, 551-579. 3. L. Banci, I. Bertini, H. B. Gray, C. Luchinat, T. Reddig, A. Rosato and P. Turano, Biochemistry, 1997, 36, 9867-9877. 4. I. G. Denisov, T. M. Makris, S. G. Sligar and I. Schlichting, Chemical Reviews, 2005, 105, 2253-2277. 5. A. R. Jones, Photochemical & Photobiological Sciences, 2017, 16, 820-834. 6. L. Szatkowski and M. B. Hall, Dalton Transactions, 2016, 45, 16869-16877. 7. Q. Hu, H. Miyashita, I. Iwasaki, N. Kurano, S. Miyachi, M. Iwaki and S. Itoh, Proceedings Of the National Academy Of Sciences Of the United States Of America, 1998, 95, 13319-13323. 8. W. R. Scheidt and C. A. Reed, Chemical Reviews, 1981, 81, 543-555. 9. H. Goff, G. N. Lamar and C. A. Reed, Journal of the American Chemical Society, 1977, 99, 3641-3646. 10. W. Jentzen, M. C. Simpson, J. D. Hobbs, X. Song, T. Ema, N. Y. Nelson, C. J. Medforth, K. M. Smith, M. Veyrat, M. Mazzanti, R. Ramasseul, J. C. Marchon, T. Takeuchi, W. A. Goddard and J. A. Shelnutt, Journal of the American Chemical Society, 1995, 117, 11085-11097. 11. W. Jentzen, J. G. Ma and J. A. Shelnutt, Biophysical Journal, 1998, 74, 753-763. 12. C. Kiefl, N. Sreerama, R. Haddad, L. S. Sun, W. Jentzen, Y. Lu, Y. Qiu, J. A. Shelnutt and R. W. Woody, Journal of the American Chemical Society, 2002, 124, 3385-3394. 13. K. M. Barkigia, L. Chantranupong, K. M. Smith and J. Fajer, Journal of the American Chemical Society, 1988, 110, 7566-7567. 14. Z. Ren, T. Meyer and D. E. Mcree, Journal of Molecular Biology, 1993, 234, 433-445. 15. B. C. Finzel, P. C. Weber, K. D. Hardman and F. R. Salemme, Journal of Molecular Biology, 1985, 186, 627-643. 16. M. Yasui, S. Harada, Y. Kai, N. Kasai, M. Kusunoki and Y. Matsuura, Journal of Biochemistry, 1992, 111, 317-324. 17. K. M. Barkigia, M. D. Berber, J. Fajer, C. J. Medforth, M. W. Renner and K. M. Smith, Journal of the American Chemical Society, 1990, 112, 8851-8857. 18. R. J. Cheng, P. Y. Chen, P. R. Gau, C. C. Chen and S. M. Peng, Journal of the American Chemical Society, 1997, 119, 2563-2569. 19. T. Ema, M. O. Senge, N. Y. Nelson, H. Ogoshi and K. M. Smith, Angewandte Chemie-International Edition in English, 1994, 33, 1879-1881. 20. M. O. Senge, T. Ema and K. M. Smith, Journal of the Chemical Society-Chemical Communications, 1995, 733-734. 21. L.-J. Ming, CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), 1996, 54, 69. 22. M. M. Maltempo, The Journal of Chemical Physics, 1974, 61, 2540-2547. 23. 陳卿謹, 國立中興大學化學系博士論文, 2015. 24. F. A. Walker, in The Porphyrin Handbook, eds. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, San Diego, 2000, pp. 81-184. 25. D. F. Evans, Journal of the Chemical Society, 1959, 2003-2005. 26. J. Loliger and Scheffol.R, Journal of Chemical Education, 1972, 49, 646. 27. D. Ostfeld and I. A. Cohen, Journal of Chemical Education, 1972, 49, 829. 28. R. S. Drago, in Physical Mehtods for Chemists, Saunders College, 1992, pp. 469-499. 29. I. Bertini, C. Luchinat and G. Parigi, Solution NMR of Parmagnetic Molecules, Elsevier, Amsterdam, 2001. 30. H. M. McConnell, The Journal of Chemical Physics, 1956, 24, 764. 31. H. M. Goff, in Iron Porphyrins, eds. A. B. P. Lever and H. B. Gray, Addison-Wesley, Massachusetts, 1983, pp. 237-281. 32. J. H. Van Vleck, The Theory of Electric ad Magnetic Susceptibilities, Oxford University Press, Oxford, 1932. 33. O. Kahn, Molecular Magnetism, Wiley-VCH, New York, 1993. 34. H. M. Goff, Journal of the American Chemical Society, 1981, 103, 3714-3722. 35. J. Mispelter, M. Momenteau and J.-M. Lhoste, in Biological Magnetic Resonance, eds. L. J. Berliner and J. Reuben, Plenum Press, New York, 1993, pp. 299-356. 36. N. V. Shokhirev and F. A. Walker, Journal of Physical Chemistry, 1995, 99, 17795-17804. 37. P. Rothemund, Journal of the American Chemical Society, 1935, 57, 2010-2011. 38. P. Rothemund, Journal of the American Chemical Society, 1941, 63, 267-270. 39. A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, journal of Organic Chemistry, 1967, 32, 476-476. 40. J. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney and A. M. Marguerettaz, Journal of Organic Chemistry, 1987, 52, 827-836. 41. B. C. Milgram, K. Eskildsen, S. M. Richter, W. R. Scheidt and K. A. Scheidt, Journal of Organic Chemistry, 2007, 72, 3941-3944. 42. G. D. Hartman and L. M. Weinstock, Organic Syntheses, 1988, 50-9, 620-624. 43. N. Ono and K. Maruyama, Bulletin of the Chemical Society of Japan, 1988, 61, 4470-4472. 44. N. Ono, H. Kawamura, M. Bougauchi and K. Maruyama, Tetrahedron, 1990, 46, 7483-7496. 45. J. C. Ferrand, R. Schneider, P. Gerardin and B. Loubinoux, Synthetic Communications, 1996, 26, 4329-4336. 46. 陳炳宇, 國立中興大學化學系博士論文, 2001. 47. Y. Z. Jin, D. X. Fu, N. Ma, Z. C. Li, Q. H. Liu, L. Xiao and R. H. Zhang, Molecules, 2011, 16, 9368-9385. 48. K. M. Barkigia, M. W. Renner and J. Fajer, Journal Of Porphyrins And Phthalocyanines, 2001, 5, 415-418. 49. P. Gans, G. Buisson, E. Duee, J. C. Marchon, B. S. Erler, W. F. Scholz and C. A. Reed, Journal of the American Chemical Society, 1986, 108, 1223-1234. 50. S. Kouno, A. Ikezaki, T. Ikeue and M. Nakamura, Journal of Inorganic Biochemistry, 2011, 105, 718-721. 51. Y. Watanabe, in The Porphyrin Handbook, eds. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, San Diego, 2000, pp. 97-117. 52. T. G. Traylor, C. Kim, W. P. Fann and C. L. Perrin, Tetrahedron, 1998, 54, 7977-7986. 53. T. G. Traylor, C. Kim, J. L. Richards, F. Xu and C. L. Perrin, Journal Of the American Chemical Society, 1995, 117, 3468-3474. 54. T. G. Traylor, S. Tsuchiya, Y. S. Byun and C. Kim, Journal Of the American Chemical Society, 1993, 115, 2775-2781. 55. T. G. Traylor, W. P. Fann and D. Bandyopadhyay, Journal Of the American Chemical Society, 1989, 111, 8009-8010. 56. T. G. Traylor and J. P. Ciccone, Journal Of the American Chemical Society, 1989, 111, 8413-8420. 57. T. G. Traylor and F. Xu, Journal Of the American Chemical Society, 1987, 109, 6201-6202. 58. O. Almarsson and T. C. Bruice, Journal Of the American Chemical Society, 1995, 117, 4533-4544. 59. T. C. Bruice, Accounts Of Chemical Research, 1991, 24, 243-249. 60. G. X. He and T. C. Bruice, Journal Of the American Chemical Society, 1991, 113, 2747-2753. 61. W. Nam, H. J. Han, S. Y. Oh, Y. J. Lee, M. H. Choi, S. Y. Han, C. Kim, S. K. Woo and W. Shin, Journal Of the American Chemical Society, 2000, 122, 8677-8684. 62. R. T. Jonas and T. D. P. Stack, Journal Of the American Chemical Society, 1997, 119, 8566-8567. 63. C. R. Goldsmith, R. T. Jonas and T. D. P. Stack, Journal Of the American Chemical Society, 2002, 124, 83-96. 64. C. R. Goldsmith, A. P. Cole and T. D. P. Stack, Journal Of the American Chemical Society, 2005, 127, 9904-9912. 65. C. R. Goldsmith and T. D. P. Stack, Inorganic Chemistry, 2006, 45, 6048-6055. 66. S. A. Cook and A. S. Borovik, Accounts Of Chemical Research, 2015, 48, 2407-2414. 67. R. Gupta and A. S. Borovik, Journal Of the American Chemical Society, 2003, 125, 13234-13242. 68. R. Gupta, T. Taguchi, A. S. Borovik and M. P. Hendrich, Inorganic Chemistry, 2013, 52, 12568-12575. 69. H. X. Gao and J. T. Groves, Journal Of the American Chemical Society, 2017, 139, 3938-3941. 70. 吳欣儒, 國立中興大學化學系碩士論文, 2007. 71. K. Yamaguchi, Y. Watanabe and I. Morishima, Journal Of the Chemical Society-Chemical Communications, 1992, 1709-1710. 72. J. Kaizer, M. Costas and L. Que, Angewandte Chemie-International Edition, 2003, 42, 3671-3673. 73. A. L. Balch, Inorg. Chim. Acta, 1992, 198, 297-307. 74. K. Yamaguchi, Y. Watanabe and I. Morishima, Journal Of the American Chemical Society, 1993, 115, 4058-4065. 75. R. B. Woodward, Pure Appl. Chem., 1961, 2, 383-404. 76. D. Dolphin, R. H. Felton, D. C. Borg and J. Fajer, Journal Of the American Chemical Society, 1970, 92, 743-&. 77. Z. Q. Cong, T. Kurahashi and H. Fujii, Journal Of the American Chemical Society, 2012, 134, 4469-4472. 78. A. Gold, W. Ivey, G. E. Toney and R. Sangaiah, Inorganic Chemistry, 1984, 23, 2932-2935. 79. I. Garcia-Bosch, S. K. Sharma and K. D. Karlin, Journal Of the American Chemical Society, 2013, 135, 16248-16251. 80. 馮剛彥, 國立中興大學化學系碩士論文, 2016. 81. K. A. Gardner, L. L. Kuehnert and J. M. Mayer, Inorganic Chemistry, 1997, 36, 2069-2078. 82. K. Wang and J. M. Mayer, Journal Of the American Chemical Society, 1997, 119, 1470-1471. 83. J. P. Roth and J. M. Mayer, Inorganic Chemistry, 1999, 38, 2760-2761.
摘要: In this study, paramagnetic NMR spectroscopy, X-ray diffraction, magnetic susceptibility and DFT calculation are employed to elucidate the strong bonding interaction between iron(III) dx2-y2 and porphyrin a2u orbitals of [Fe(OMTPP∙)Cl]SbCl6 and [Fe(OETPP∙)Cl]SbCl6. Their crystal structures clearly indicate that their saddle deformations are increased compared to those prior to oxidations. Their 1H NMR data present the S = 2 states for such one-electron oxidation states, and demonstrate that their structures in solutions remain strong saddle deformations. In light of 1H NMR spectroscopy of [Fe(TPP∙)Cl]SbCl6 resembling to the above cases, we postulate that the ring structure of [Fe(TPP∙)Cl]+ may possess strongly saddle to have great bonding interaction between iron(III) dx2-y2 and porphyrin a2u orbitals. In the DFT calculations, the degrees of phenyl ring rotation and saddled deformation will also affect their NMR spectra. In another topic, we observe O-O bond homolytic cleavage of (OETPP)FeIIIO(H)OtBu formed in the reaction of Fe(OETPP)ClO4 with TBHP and its activation parameters (ΔH≠ = 47(2) kJ mol-1, ΔS≠ = 83(9)J mol-1K-1) is measured by low-temperature UV-vis spectral data. The corresponding one-electron oxidation product is identified as [Fe(OETPP∙)OH]+, which is an isoelectronic structure as oxoiron(IV) porphyrin, by UV-vis, NMR spectroscopy and ESI-MS spectrometry. According to the experiments of NMR and ESI-MS, we also find that ·OtBu radical will convert Fe(OETPP)ClO4 to [Fe(OETPP∙)OtBu]+. Furthermore, these related iron(III) porphyrin radical cations can be carried out one more electron oxidation to isoporphyrins, an isoelectronic structure as Compound I. These iron(III) saddled isoporphyrins are shown to be reactive for highly selective chlorination of cyclohexene.
我們透過[Fe(OMTPP‧)Cl]+、[Fe(OETPP‧)Cl]+兩種不同馬鞍型變形程度的三價鐵卟啉陽離子自由基的晶體結構、1H NMR光譜、磁滯率量測及DFT理論計算,皆顯示兩者具有相似的強dx2-y2-a2u軌域作用。兩種馬鞍型三價鐵卟啉陽離子自由基的變形程度皆較氧化前大,也有類似的1H NMR光譜,他們的光譜數據也符合溶液中結構為高度馬鞍型變形。因此平面卟啉Fe(TPP)Cl經單電子氧化後,可得到類似[Fe(OMTPP‧)Cl]+、[Fe(OETPP‧)Cl]+的光譜結果,顯示其馬鞍型變形程度可能增加導致dx2-y2-a2u軌域作用增強。本文中以DFT理論計算將三種馬鞍型變形卟啉模型透過苯基旋轉及馬鞍型變形調整,發現其相似的NMR光譜具有多種成因。   在另一主題中,我們以TBHP氧化Fe(OETPP)ClO4,在低溫UV-vis量測(OETPP)FeIIIO(H)OtBu的O-O鍵均相斷鍵動力學參數(ΔHǂ = 47(2) kJ mol-1,ΔSǂ = 83(9)J mol-1K-1),並透過低溫1H NMR及ESI-MS鑑定得到與四價鐵等電子數的 [Fe(OETPP‧)OH]+,且發現斷鍵後的·OtBu自由基會再對三價鐵進行氧化形成 [Fe(OETPP‧)OtBu]+。除此之外,三價鐵卟啉陽離子自由基仍會與過量的TBHP反應,得到與四價鐵卟啉陽離子自由基(通稱為Compound I)等電子數的三價鐵異卟啉。最後,我們利用三價鐵異卟啉於二氯甲烷中催化環己烯,得到以溶劑作為氯的來源且具有高選擇性的結果。
URI: http://hdl.handle.net/11455/96263
文章公開時間: 2021-07-30
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.