Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96276
標題: (1)One-pot Synthesis of Thioesters with Bunte Salts as a Sulfur Surrogate under Transition Metal-Free Conditions (2)Hexamethyldisilazane Promoted C-N Bond Formation via Thioesters: Synthesis of Benzamides and Dimethylformamidines
(1)利用硫代硫酸鈉作為硫的取代物在無過渡金屬的一鍋化條件下進行硫酯的合成 (2)利用六甲基二矽氮烷透過硫酯來建立碳氮鍵:合成苯甲醯胺及二甲基甲脒
作者: Yen-Sen Liao
廖彥森
關鍵字: 硫酯
酸酐
硫代硫酸鈉
有機鹵試劑
無過渡金屬
一級醯胺
六甲基二矽氮烷
二甲基甲脒
thioesters
sodium thiosulfate
anhydrides
organic halides
transition metal-free
primary amides
hexamethyldisilazane
dimethylformamidine
引用: 題目一: 1. (a) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807-8864; (b) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S.; Liu, X. Chem. Soc. Rev. 2015, 44, 291-314; (c) Tao, C.; Liu, F.; Zhu, Y.; Liu, W.; Cao, Z. Org. Biomol. Chem. 2013, 11, 3349-3354. 2. Dunbar, K. L.; Scharf, D. H.; Litomska, A.; Hertweck, C. Chem. Rev. 2017, 117, 5521-5577. 3. Nair, D. P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C. R.; Bowman, C. N. Chem. Mater. 2014, 26, 724-744. 4. (a) Chen, X.; Zhou, Y.; Peng, X.; Yoon, J. Chem. Soc. Rev. 2010, 39, 2120-2135; (b) Yin, C.; Huo, F.; Zhang, J.; Martinez-Manez, R.; Yang, Y.; Lv, H.; Li, S. Chem. Soc. Rev. 2013, 42, 6032-6059. 5. Sancineto, L.; Tidei, C.; Bagnoli, L.; Marini, F.; Lippolis, V.; Arca, M.; Lenardão, E. J.; Santi, C. Eur. J. Org. Chem. 2016, 2999-3005. 6. (a) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260-11261; (b) Kunchithapatham, K.; Eichman, C. C.; Stambuli, J. P. Chem. Commun. 2011, 47, 12679-12681; (c) Gao, X.; Woo, S. K.; Krische, M. J. J. Am. Chem. Soc. 2013, 135, 4223-4226; (d) Qiao, Z.; Jiang, X. Org. Lett. 2016, 18, 1550-1553; (e) Yang, H.; Liebeskind, L. S. Org. Lett. 2007, 9, 2993-2995. 7. Hackenberger, C. P.; Schwarzer, D. Angew. Chem. Int. Ed. 2008, 47, 10030-10074. 8. (a) Stetsenko, D. A.; Gait, M. J. J. Org. Chem. 2000, 65, 4900-4908; (b) Choi, J.; Imai, E.; Mihara, M.; Oderaotoshi, Y.; Minakata, S.; Komatsu, M. J. Org. Chem. 2003, 68, 6164-6171. 9. (a) Neises, B.; Steglich, W. Angew. Chem. Int. Ed. Engl. 1978, 17, 522-524; (b) Masamune, S.; Kamata, S.; Diakur, J.; Sugihara, Y.; Bates, G. S. Can. J. Chem. 1975, 53, 3693-3695. 10. (a) Katritzky, A.; Shestopalov, A.; Suzuki, K. Synthesis 2004, 1806-1813; (b) Iranpoor, N.; Firouzabadi, H.; Khalili, D.; Motevalli, S. J. Org. Chem. 2008, 73, 4882-4887; (c) Nowrouzi, N.; Mehranpour, A. M.; Rad, J. A. Tetrahedron 2010, 66, 9596-9601; (d) El-Azab, A. S.; Abdel-Aziz, A. A. M. Phosphorus, Sulfur Silicon Relat. Elem. 2012, 187, 1046-1055. 11. (a) Chakraborti, A. K.; Shivani J. Org. Chem. 2006, 71, 5785-5788; (b) Chakraborti, A. K.; Gulhane, R.; Shivani Synlett 2003, 1805-1808; (c) Kanta De, S. Tetrahedron Lett. 2004, 45, 2919-2922. 12. (a) Burhardt, M. N.; Taaning, R. H.; Skrydstrup, T. Org. Lett. 2013, 15, 948-951; (b) Iranpoor, N.; Firouzabadi, H.; Etemadi-Davan, E.; Nematollahi, A.; Firouzi, H. R. New J. Chem. 2015, 39, 6445-6452. 13. Huang, Y.-T.; Lu, S.-Y.; Yi, C.-L.; Lee, C.-F. J. Org. Chem. 2014, 79, 4561-4568. 14. (a) Badsara, S. S.; Liu, Y.-C.; Hsieh, P.-A.; Zeng, J.-W.; Lu, S.-Y.; Liu, Y.-W.; Lee, C.-F. Chem. Commun. 2014, 50, 11374-11377; (b) Feng, J.; Lv, M.-F.; Lu, G.-P.; Cai, C. Org. Biomol. Chem. 2015, 13, 677-681; (c) Zhu, X.; Shi, Y.; Mao, H.; Cheng, Y.; Zhu, C. Adv. Synth. Catal. 2013, 355, 3558-3562; (d) Zeng, J.-W.; Liu, Y.-C.; Hsieh, P.-A.; Huang, Y.-T.; Yi, C.-L.; Badsara, S. S.; Lee, C.-F. Green Chem. 2014, 16, 2644-2652; (e) Chung, J.; Seo, U. R.; Chun, S.; Chung, Y. K. ChemCatChem 2016, 8, 318-321; (f) Uno, T.; Inokuma, T.; Takemoto, Y. Chem. Commun. 2012, 48, 1901-1903. 15. (a) Ramazani, A.; Nasrabadi, F. Z. Phosphorus, Sulfur Silicon Relat. Elem. 2013, 188, 1214-1219; (b) Cao, Y. Q.; Wu, G. Q.; Li, Y. B.; Dai, Z.; Chen, B. H. Synth. Commun. 2006, 36, 3353-3358. 16. Gopinath, P.; Vidyarini, R. S.; Chandrasekaran, S. J. Org. Chem. 2009, 74, 6291-6294. 17. Boeini, H. Z.; Kashan, M. E. Green Chem. 2009, 11, 1987-1991. 18. (a) Lu, G. -P.; Cai, C. Adv. Synth. Catal. 2013, 355, 1271-1276; (b) Abbasi, M.; Khalifeh, R. Beilstein J. Org. Chem. 2015, 11, 1265-1273; (c) Chou, Y.-L.; Jhong, Y.; Swain, S. P.; Hou, D.-R. J. Org. Chem. 2017, 82, 10201-10208. 19. Reeves, J. T.; Camara, K.; Han, Z. S.; Xu, Y.; Lee, H.; Busacca, C. A.; Senanayake, C. H. Org. Lett. 2014, 16, 1196-1199. 20. (a) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299-4306; (b) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289-296. 21. Jug, U.; Pregeljc, D.; Mavri, J.; Vianello, R.; Stare, J. Comput. Theor. Chem. 2017, 1116, 96-101. 22. Daskiewicz, J.-B.; Depeint, F.; Viornery, L.; Bayet, C.; Comte-Sarrazin, G.; Comte, G.; Gee, J. M.; Johnson, I. T.; Ndjoko, K.; Hostettmann, K.; Barron, D. J. Med. Chem. 2005, 48, 2790-2804. 23. Gopinath, P.; Debasree, C.; Vidyarini, R. S.; Chandrasekaran, S. Tetrahedron 2010, 66, 7001-7011. 24. Fukuyama, T.; Miyazaki, T.; Han-ya, Y.; Tokuyama, H. Synlett 2004, 477-480. 25. (a) Qiao, Z.; Wei, J.; Jiang, X. Org. Lett. 2014, 16, 1212-1215; (b) Li, Y.; Pu, J.; Jiang, X. Org. Lett. 2014, 16, 2692-2695. 26. Feng, J.; Lu, G.-P.; Cai, C. RSC Adv. 2014, 4, 54409-54415. 27. Karimi Zarchi, M. A.; Nejabat, M. J. Appl. Polym. Sci. 2012, 125, 1041-1048. 28. Yan, K.; Yang, D.; Wei, W.; Zhao, J.; Shuai, Y.; Tian, L.; Wang, H. Org. Biomol. Chem. 2015, 13, 7323-7330. 29. Won, J. -E.; Kim, H. -K.; Kim, J. -J.; Yim, H. -S.; Kim, M. -J.; Kang, S. -B.; Chung, H. -A.; Lee, S. -G.; Yoon, Y. -J. Tetrahedron 2007, 63, 12720-12730. 30. Cao, H.; McNamee, L.; Alper, H. J. Org. Chem. 2008, 73, 3530-3534. 31. Ogawa, K. A.; Boydston, A. J. Org. Lett. 2014, 16, 1928-1931. 32. Ali, W.; Guin, S.; Rout, S. K.; Gogoi, A.; Patel, B. K. Adv. Synth. Catal. 2014, 356, 3099-3105. 33. Tanaka, S.; Pradhan, P. K.; Maegawa, Y.; Kitamura, M. Chem. Commun. 2010, 46, 3996-3998. 34. Singh, P.; Peddinti, R. K. Tetrahedron Lett. 2017, 58, 1875-1878. 35. Christensen, J. B.; Pittelkow, M.; Kamounah, F. S.; Boas, U.; Pedersen, B. Synthesis 2004, 2485-2492. 36. Tallon, S.; Lawlor, A. C.; Connon, S. J. ARKIVOC 2011, 115-126 37. Zali-Boeini, H.; Khajeh, A. J. Sulfur Chem. 2012, 33, 285-293. 38. Iranpoor, N.; Firouzabadi, H.; Riazi, A.; Pedrood, K. J. Organomet. Chem. 2016, 822, 67-73. 39. Simoni, E.; Serafini, M. M.; Caporaso, R.; Marchetti, C.; Racchi, M.; Minarini, A.; Bartolini, M.; Lanni, C.; Rosini, M. ACS Chem. Neurosci. 2017, 8, 1618-1627. 40. Ji, M.; Wang, X.; Lim, Y. N.; Kang, Y.-W.; Jang, H.-Y. Eur. J. Org. Chem. 2013, 7881-7885. 41. Konieczynska, M. D.; Dai, C.; Stephenson, C. R. Org. Biomol. Chem. 2012, 10, 4509-4511. 42. Phakhodee, W.; Duangkamol, C.; Wangngae, S.; Pattarawarapan, M. Tetrahedron Lett. 2016, 57, 325-328. 43. Cirriez, V.; Rasson, C.; Riant, O. Adv. Synth. Catal. 2013, 355, 3137-3140. 44. Liu, Y.; Liu, R.; Szostak, M. Org. Biomol. Chem. 2017, 15, 1780-1785. 45. Saberi, D.; Shojaeyan, F.; Niknam, K. Tetrahedron Lett. 2016, 57, 566-569. 46. Dhimitruka, I.; SantaLucia, J. Org. Lett. 2006, 8, 47-50. 47. Adib, M.; Pashazadeh, R.; Rajai-Daryasarei, S.; Mirzaei, P.; Jamal Addin Gohari, S. Tetrahedron Lett. 2016, 57, 3071-3074. 48. Liu, H.-X.; Dang, Y.-Q.; Yuan, Y.-F.; Xu, Z.-F.; Qiu, S.-X.; Tan, H.-B. Org. Lett. 2016, 18, 5584-5587. 49. Fife, W. K.; Zhang, Z.-d. Tetrahedron Lett. 1986, 27, 4933-4936. 50. Sharghi, H.; Jokar, M.; Doroodmand, M. M. Adv. Synth. Catal. 2011, 353, 426-442. 51. Lu, F.; Chen, Z.; Li, Z.; Wang, X.; Peng, X.; Li, C.; Fang, L.; Liu, D.; Gao, M.; Lei, A. Org. Lett. 2017, 19, 3954-3957. 52. Levashov, A. S.; Aksenov, N. A.; Aksenova, I. V.; Konshin, V. V. New J. Chem. 2017, 41, 8297-8304. 題目二: 1. (a) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606-631; (b) Allen, C. L.; Williams, J. M. Chem. Soc. Rev. 2011, 40, 3405-3415; (c) de Figueiredo, R. M.; Suppo, J.-S.; Campagne, J.-M. Chem. Rev. 2016, 116, 12029-12122. 2. Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243-2266. 3. Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471-479. 4. (a) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Asian J. 2010, 5, 2168-2172; (b) Rajendar, K.; Kant, R.; Narender, T. Adv. Synth. Catal. 2013, 355, 3591-3596; (c) Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Org. Lett. 2014, 16, 1060-1063; (d) Tamaddon, F.; Pouramini, F. Synlett 2014, 25, 1127-1131; (e) Deng, T.; Wang, C.-Z. ChemCatChem 2017, 9, 1349-1353. 5. Yanaranop, P.; Santoso, B.; Etzion, R.; Jin, J. Polymer 2016, 98, 244-251. 6. Bordes, R.; Tropsch, J.; Holmberg, K. Langmuir 2010, 26, 3077-3083. 7. Khalkar, S.; Bhowmick, D.; Pratap, A. J. Oleo Sci. 2013, 62, 901-904. 8. (a) Bose, D. S.; Jayalakshmi, B. J. Org. Chem. 1999, 64, 1713-1714; (b) Tahseen, R.; Oliver, K. C. ChemSusChem 2008, 1, 123-132; (c) Cha, J. S.; Brown, H. C. J. Org. Chem. 1993, 58, 3974-3979; (d) Yoon, N. M.; Gyoung, Y. S. J. Org. Chem. 1985, 50, 2443-2450; (e) Kazuaki, S. Bull. Chem. Soc. Jpn. 1985, 58, 838-843; (f) Schnyder, A.; Indolese, A. F. J. Org. Chem. 2002, 67, 594-597. 9. (a) de Paulis, T.; Kumar, Y.; Johansson, L.; Raemsby, S.; Hall, H.; Saellemark, M.; Aengeby-Moeller, K.; Oegren, S.-O. J. Med. Chem. 1986, 29, 61-69; (b) Kadam, V. S.; Shaikh, S. G.; Patel, A. L. J. Mol. Struct. 2016, 114, 181-188; (c) Ma, Y.; Stivala, C. E.; Wright, A. M.; Hayton, T.; Liang, J.; Keresztes, I.; Lobkovsky, E.; Collum, D. B.; Zakarian, A. J. Am. Chem. Soc. 2013, 135, 16853-16864; (d) Pellegata, R.; Italia, A.; Villa, M.; Palmisano, G.; Lesma, G. Synthesis 1985, 517-519. 10. (a) McMaster, L.; Langreck, F. B. J. Am. Chem. Soc. 1917, 39, 103-109; (b) Snyder, H. R.; Elston, C. T. J. Am. Chem. Soc. 1954, 76, 3039-3040; (c) Hauser, C. R.; Eby, C. J. J. Am. Chem. Soc. 1957, 79, 725-727; (d) Moorthy, J. N.; Singhal, N. J. Org. Chem. 2005, 70, 1926-1929. 11. (a) Shimizu, K.-i.; Kubo, T.; Satsuma, A.; Kamachi, T.; Yoshizawa, K. ACS Catal. 2012, 2, 2467-2474; (b) Dubey, P.; Gupta, S.; Singh, A. K. Dalton Trans. 2017, 46, 13065-13076; (c) Crestani, M. G.; Arévalo, A.; García, J. J. Adv. Synth. Catal. 2006, 348, 732-742; (d) Ma, X.; He, Y.; Wang, P.; Lu, M. Appl. Organometal. Chem. 2012, 26, 377-382; (e) Singh, K.; Sarbajna, A.; Dutta, I.; Pandey, P.; Bera, J. K. Chem. Eur. J. 2017, 23, 7761-7771; (f) Liu, Y.-M.; He, L.; Wang, M.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. ChemSusChem 2012, 5, 1392-1396; (g) Kumar, S.; Sharma, S.; Das, P. Adv. Synth. Catal. 2016, 358, 2889-2894; (h) Goto, A.; Endo, K.; Saito, S. Angew. Chem. Int. Ed. 2008, 47, 3607-3609; (i) Prakash, G. K. S.; Munoz, S. B.; Papp, A.; Masood, K.; Bychinskaya, I.; Mathew, T.; Olah, G. A. Asian J. Org. Chem. 2012, 1, 146-149; (j) García-Álvarez, R.; Zablocka, M.; Crochet, P.; Duhayon, C.; Majoral, J.-P.; Cadierno, V. Green Chem. 2013, 15, 2447-2456; (k) Baig, R. B. N.; Nadagouda, M. N.; Varma, R. S. Green Chem. 2014, 16, 2122-2127; (l) Tomas-Mendivil, E.; Cadierno, V.; Menendez, M. I.; Lopez, R. Chem. Eur. J. 2015, 21, 16874-16886; (m) González-Fernández, R.; González-Liste, P. J.; Borge, J.; Crochet, P.; Cadierno, V. Catal. Sci. Technol. 2016, 6, 4398-4409; (n) Gulyás, H.; Rivilla, I.; Curreli, S.; Freixa, Z.; van Leeuwen, P. W. N. M. Catal. Sci. Technol. 2015, 5, 3822-3828; (o) Marce, P.; Lynch, J.; Blacker, A. J.; Williams, J. M. Chem. Commun. 2016, 52, 1436-1438; (p) Gonzalez-Fernandez, R.; Crochet, P.; Cadierno, V.; Menendez, M. I.; Lopez, R. Chem. Eur. J. 2017, 23, 15210-15221; (q) Zhang, S.; Xu, H.; Lou, C.; Senan, A. M.; Chen, Z.; Yin, G. Eur. J. Org. Chem. 2017, 1870-1875; (r) Salam, N.; Kundu, S. K.; Molla, R. A.; Mondal, P.; Bhaumik, A.; Islam, S. M. RSC Adv. 2014, 4, 47593-47604; (s) Li, J.; Tang, G.; Wang, Y.; Wang, Y.; Li, Z.; Li, H. New J. Chem. 2016, 40, 358-364. 12. (a) Veisi, H.; Maleki, B.; Hamelian, M.; Ashrafi, S. S. RSC Adv. 2015, 5, 6365-6371; (b) Verma, P. K.; Sharma, U.; Bala, M.; Kumar, N.; Singh, B. RSC Adv. 2013, 3, 895-899. 13. (a) Fujiwara, H.; Ogasawara, Y.; Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed. 2007, 46, 5202-5205; (b) Owston, N. A.; Parker, A. J.; Williams, J. M. J. Org. Lett. 2007, 9, 3599-3601; (c) Sun, C.; Qu, P.; Li, F. Catal. Sci. Technol. 2014, 4, 988-996; (d) Menéndez-Rodríguez, L.; Tomás-Mendivil, E.; Francos, J.; Nájera, C.; Crochet, P.; Cadierno, V. Catal. Sci. Technol. 2015, 5, 3754-3761. 14. (a) García-Álvarez, R.; Díaz-Álvarez, A. E.; Crochet, P.; Cadierno, V. RSC Adv. 2013, 3, 5889-5894; (b) Jamatia, R.; Gupta, A.; Pal, A. K. ACS Sustainable Chem. Eng. 2017, 5, 7604-7612; (c) Rostamnia, S.; Nouruzi, N.; Xin, H.; Luque, R. Catal. Sci. Technol. 2015, 5, 199-205; (d) Kadam, R. G.; Rathi, A. K.; Cepe, K.; Zboril, R.; Varma, R. S.; Gawande, M. B.; Jayaram, R. V. ChemPlusChem 2017, 82, 467-473; (e) Murugesan, K.; Senthamarai, T.; Sohail, M.; Sharif, M.; Kalevaru, N. V.; Jagadeesh, R. V. Green Chem. 2018, 20, 266-273; (f) Khalafi-Nezhad, A.; Mohammadi, S. RSC Adv. 2014, 4, 13782-13787. 15. Yamaguchi, K.; Kobayashi, H.; Wang, Y.; Oishi, T.; Ogasawara, Y.; Mizuno, N. Catal. Sci. Technol. 2013, 3, 318-327. 16. Ray, R.; Hazari, A. S.; Chandra, S.; Maiti, D.; Lahiri, G. K. Chem. Eur. J. 2018, 24, 1067-1071. 17. (a) Sharif, M.; Wu, X.-F. RSC Adv. 2015, 5, 21001-21004; (b) Jadhav, V. G.; Bhojane, J. M.; Nagarkar, J. M. RSC Adv. 2015, 5, 6636-6641. 18. He, J.; Yamaguchi, K.; Mizuno, N. J. Org. Chem. 2011, 76, 4606-4610. 19. (a) Wu, X.-F.; Bheeter, C. B.; Neumann, H.; Dixneuf, P. H.; Beller, M. Chem. Commun. 2012, 48, 12237-12239; (b) Nageswara Rao, S.; Reddy, N. N. K.; Samanta, S.; Adimurthy, S. J. Org. Chem. 2017, 82, 13632-13642. 20. Ghosh, S. C.; Ngiam, J. S.; Seayad, A. M.; Tuan, D. T.; Chai, C. L.; Chen, A. J. Org. Chem. 2012, 77, 8007-8015. 21. (a) Wu, X.-F.; Sharif, M.; Feng, J.-B.; Neumann, H.; Pews-Davtyan, A.; Langer, P.; Beller, M. Green Chem. 2013, 15, 1956-1961; (b) Zhang, L.; Wang, W.; Wang, A.; Cui, Y.; Yang, X.; Huang, Y.; Liu, X.; Liu, W.; Son, J.-Y.; Oji, H.; Zhang, T. Green Chem. 2013, 15, 2680-2684; (c) Xie, Z.; Chen, R.; Du, Z.; Kong, L.; Li, Z.; Li, Z.; Wang, N.; Liu, J. Asian J. Org. Chem. 2017, 6, 157-160; (d) Zhao, Z.; Wang, T.; Yuan, L.; Hu, X.; Xiong, F.; Zhao, J. Adv. Synth. Catal. 2015, 357, 2566-2570; (e) Sharif, M.; Gong, J.-L.; Langer, P.; Beller, M.; Wu, X.-F. Chem. Commun. 2014, 50, 4747-4750. 22. Owston, N. A.; Parker, A. J.; Williams, J. M. J. Org. Lett. 2007, 9, 73-75. 23. (a) Ranu, B. C.; Sarkar, A.; Chakraborty, R. J. Org. Chem. 1994, 59, 4114-4116; (b) Benati, L.; Bencivenni, G.; Leardini, R.; Nanni, D.; Minozzi, M.; Spagnolo, P.; Scialpi, R.; Zanardi, G. Org. Lett. 2006, 8, 2499-2502. 24. (a) Li, X.-Q.; Wang, W.-K.; Han, Y.-X.; Zhang, C. Adv. Synth. Catal. 2010, 352, 2588-2598; (b) Sathyanarayana, P.; Upare, A.; Ravi, O.; Muktapuram, P. R.; Bathula, S. R. RSC Adv. 2016, 6, 22749-22753. 25. (a) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Eur. J. 2010, 16, 9750-9753; (b) Alsabeh, P. G.; Stradiotto, M.; Neumann, H.; Beller, M. Adv. Synth. Catal. 2012, 354, 3065-3070; (c) Mane, R. S.; Bhanage, B. M. RSC Adv. 2015, 5, 76122-76127; (d) Wang, D.-L.; Liu, H.; Yang, D.; Wang, P.; Lu, Y.; Liu, Y. ChemCatChem 2017, 9, 4206-4211; (e) Qi, X.; Ai, H.-J.; Cai, C.-X.; Peng, J.-B.; Ying, J.; Wu, X.-F. Eur. J. Org. Chem. 2017, 7222-7225. 26. Wu, X.-F.; Neumann, H.; Beller, M. Chem. Eur. J. 2012, 18, 419-422. 27. Veitch, G. E.; Bridgwood, K. L.; Ley, S. V. Org. Lett. 2008, 10, 3623-3625. 28. Cao, L.; Ding, J.; Gao, M.; Wang, Z.; Li, J.; Wu, A. Org. Lett. 2009, 11, 3810-3813. 29. Midya, G. C.; Kapat, A.; Maiti, S.; Dash, J. J. Org. Chem. 2015, 80, 4148-4151. 30. (a) Matsuo, K.; Shindo, M. Org. Lett. 2011, 13, 4406-4409; (b) Peschiulli, A.; Procuranti, B.; O' Connor, C. J.; Connon, S. J. Nat. Chem. 2010, 2, 380-384. 31. Huang, G.; Zhao, H.-R.; Meng, Q.-Q.; Zhang, Q.-J.; Dong, J.-Y.; Zhu, B.-q.; Li, S.-S. Eur. J. Med. Chem. 2018, 143, 166-181. 32. (a) Lin, Y.-i.; Lang Jr, S. A. Synthesis 1980, 119-121; (b) Lin, Y.-i.; Jennings, M. N.; Sliskovic, D. R.; Fields, T. L.; Lang Jr, S. A. Synthesis 1984, 946-947. 33. Kelly, C. B.; Lambert, K. M.; Mercadante, M. A.; Ovian, J. M.; Bailey, W. F.; Leadbeater, N. E. Angew. Chem. Int. Ed. 2015, 54, 4241-4245. 34. Zali-Boeini, H.; Khajeh, A. J. Sulfur Chem. 2012, 33, 285-293. 35. Li, Z.; Wang, L.; Zhou, X. Adv. Synth. Catal. 2012, 354, 584-588. 36. Zhengkai, L.; Lixia, W.; Xiangge, Z. Adv. Synth. Catal. 2012, 354, 584-588. 37. Songsichan, T.; Promsuk, J.; Rukachaisirikul, V.; Kaeobamrung, J. Org. Biomol. Chem. 2014, 12, 4571-4575. 38. Ambreen, N.; Wirth, T. Eur. J. Org. Chem. 2014, 7590-7593. 39. Ghosh, S.; Jana, C. K. Org. Lett. 2016, 18, 5788-5791. 40. Zhang, Z.; Zheng, D.; Wan, Y.; Zhang, G.; Bi, J.; Liu, Q.; Liu, T.; Shi, L. J. Org. Chem. 2018, 83, 1369-1376. 41. Tyagi, D.; Rai, R. K.; Dwivedi, A. D.; Mobin, S. M.; Singh, S. K. Inorg. Chem. Front. 2015, 2, 116-124. 42. Ospina, C. A.; Rodríguez, A. D.; Sánchez, J. A.; Ortega-Barria, E.; Capson, T. L.; Mayer, A. M. S. J. Nat. Prod. 2005, 68, 1519-1526.
摘要: In the first part of this thesis, we reported a convenient method of one-pot synthesis of thioesters by using odorless sodium thiosulfate, various anhydrides and organic halides. Compared with traditional method, this method did not use thiols, which possessed malodorous flavors and easily oxidized to form the disulfide bond. This synthetic method was firstly using organic anhydrides and sodium thiosulfate to form the Bunte salts, followed by reacting with organic halides to generate thioesters. Furthermore, two important organic compounds could be successfully synthesized using the developed method. It was worth to mention that our system was transition metal-free conditions and easy applicability to the large-scale operation. In the second part of this thesis, we developed a new method for the synthesis of primary amides by using thioesters and hexamethyldisilazane (HMDS). Compared with reported literatures, the developed methods were performed under metal-free conditions. In our synthetic strategy, we found that the hexamethyldisilazane in N,N-dimethylformamide (DMF) under heating conditions will be formed amidine, then reacted with thioesters to form the primary amide and dimethylformamidine. Moreover, primary amide and dimethylformamidine can be synthesized individually by adjusting the amounts of hexamethyldisilazane. In addition, we designed the control experiment to prove the formation of amidine by proton (H) and carbon-13 NMR spectrums. The advantages of this synthetic method were structurally diverse products, use of relatively cheap reagents, and easy applicability to large-scale operation.
本篇論文的第一部分,我們發展了一個有效率的方法來合成硫酯,而此方法是利用酸酐、硫代硫酸鈉及有機鹵試劑作為反應的起始物。在傳統方法中,都需要利用硫醇作為起始物來合成硫酯,但是硫醇會有惡臭味以及容易氧化成雙硫鍵的問題,因此我們利用無臭味的含硫原子試劑:硫代硫酸鈉來改善上述方法問題。我們的反應條件為,先利用酸酐與硫代硫酸鈉反應形成Bunte salt中間體,接著加入有機鹵試劑與Bunte salt反應就可以合成出硫酯。另外,為了增加此方法的應用性,我們也利用硫酯作為中間體去合成兩種重要的化合物。值得一提的是,在我們的方法中是在無過渡金屬的條件下進行反應,且可以應用到克級的反應。 本篇論文的第二部分,我們發展了一個新的有機方法來合成一級醯胺,而此方法是利用硫酯及六甲基二矽氮烷作為反應的起始物。和文獻報導的方法相比,我們的特色在於不需要用到金屬來催化反應,所以沒有金屬廢棄物的問題。在我們的反應條件中,是利用六甲基二矽氮烷試劑在二甲基甲醯胺的條件下先形成脒類化合物的中間體,接著與硫酯反應形成一級醯胺及二甲基甲脒。另外,我們也設計驗證實驗並根據核磁共振儀之氫譜及碳譜的結果來證明有脒類化合物中間體的產生。此合成策略的優點為,可利用已開發硫酯分子的方法搭配六甲基二矽氮烷去合成出多樣性的一級醯胺及二甲基甲脒,並且可利用調控六甲基二矽氮烷的劑量來分別合成此兩種產物,而此過程中也使用相對較便宜的試劑以及能夠應用到克級反應。
URI: http://hdl.handle.net/11455/96276
文章公開時間: 2021-07-24
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.