Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorMaw-Rong Leeen_US
dc.contributor.authorJia -Hao Wuen_US
dc.identifier.citation1. 經濟部。「2014年食品產業年鑑」,經濟部技術處產業技術知識服務計畫,2014,175。 2. Bohn, T.; Cuhra, M.; Traavik, T.; Sanden, M.; Fagan, J.; Primicerio, R., Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans. Food Chemistry 2014, 153, 207-215. 3. Amvrazi, E. G.; Albanis, T. A., Pesticide residue assessment in different types of olive oil and preliminary exposure assessment of Greek consumers to the pesticide residues detected. Food Chemistry 2009, 113, (1), 253-261. 4. Huan, Z.; Xu, Z.; Jiang, W.; Chen, Z.; Luo, J., Effect of Chinese traditional cooking on eight pesticides residue during cowpea processing. Food Chemistry 2015, 170, 118-122. 5. Nandula, V. K.; Sons, J. W., Glyphosate Resistance in Crops and Weeds. 2010, 112. 6. Tseng, S.-H.; Lo, Y.-W.; Chang, P.-C.; Chou, S.-S.; Chang, H.-M., Simultaneous Quantification of Glyphosate, Glufosinate, and Their Major Metabolites in Rice and Soybean Sprouts by Gas Chromatography with Pulsed Flame Photometric Detector. Journal of Agricultural and Food Chemistry 2004, 52, (13), 4057-4063. 7. Yang, H.; Irudayaraj, J.; Paradkar, M. M., Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chemistry 2005, 93, (1), 25-32. 8. Yang, Y.; Ferro, M. D.; Cavaco, I.; Liang, Y., Detection and Identification of Extra Virgin Olive Oil Adulteration by GC-MS Combined with Chemometrics. Journal of Agricultural and Food Chemistry 2013, 61, (15), 3693-3702. 9. 蔣永正、蔣慕琰。常用除草劑之特性與應用,農委會農業藥物毒物試驗所,2009。 10. 衛生福利部食品藥物管理署。農藥殘留容許量標準,2017。 11. Guyton, K. Z.; Loomis, D.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; Straif, K., Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. The Lancet Oncology 2015, 16, (5), 490-491. 12. Hayes, T. B.; Anderson, L. L.; Beasley, V. R.; de Solla, S. R.; Iguchi, T.; Ingraham, H.; Kestemont, P.; Kniewald, J.; Kniewald, Z.; Langlois, V. S.; Luque, E. H.; McCoy, K. A.; Muñoz-de-Toro, M.; Oka, T.; Oliveira, C. A.; Orton, F.; Ruby, S.; Suzawa, M.; Tavera-Mendoza, L. E.; Trudeau, V. L.; Victor-Costa, A. B.; Willingham, E., Demasculinization and feminization of male gonads by atrazine: Consistent effects across vertebrate classes. The Journal of Steroid Biochemistry and Molecular Biology 2011, 127, (1–2), 64-73. 13. 行政院衛生署食品藥物管理局。油炸油安全管理簡易手冊,2011。 14. Schuette, J., ENVIRONMENTAL FATE OF GLYPHOSATE. Environmental Monitoring & Pest Management Department of Pesticide Regulation, 1998. 15. Wolterink, G.; Davies, C. M. M. a. L., GLUFOSINATE-AMMONIUM, 2012. 16. Atrazine degradation, KEGG pathway, map00791, 2017. 17. Arthur, C. L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry 1990, 62, (19), 2145-2148. 18. Mester, Z.; Sturgeon, R.; Pawliszyn, J., Solid phase microextraction as a tool for trace element speciation. Spectrochimica Acta Part B: Atomic Spectroscopy 2001, 56, (3), 233-260. 19. Vas, G.; Vékey, K., Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. Journal of Mass Spectrometry 2004, 39, (3), 233-254. 20. Kataoka, H.; Lord, H. L.; Pawliszyn, J., Applications of solid-phase microextraction in food analysis. Journal of Chromatography A 2000, 880, (1), 35-62. 21. Wercinski, S. A., Solid phase microextraction: a practical guide, CRC Press:1999. 22. Lord, H.; Pawliszyn, J., Evolution of solid-phase microextraction technology. Journal of Chromatography A 2000, 885, (1), 153-193. 23. Kaifer, A. E., Fundamentals of Analytical Chemistry. Sixth edition (Skoog, Douglas A.; West, Donald M.; Hollar, James F.). Journal of Chemical Education 1992, 69, (11), A305. 24. Karasek, F. W.; Clement, R. E., Basic Gas Chromatography – Mass Spectrometry, Elsevier, 1988; 79-159. 25. Roboz, J., Mass Spectrometry in Cancer Research. 2002. 26. Hoffmann, E. d.; Stroobant, V., Mass Spectrometry:Principles and Applications. Wiley, 2013, p16. 27. van Deemter, J. J.; Zuiderweg, F. J.; Klinkenberg, A., Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chemical Engineering Science 1956, 5, (6), 271-289. 28. Yamashita, M.; Fenn, J. B., Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry 1984, 88, (20), 4451-4459. 29. Henderson, W.; Nickleson, B. K.; McCaffrey, L. J., Applications of electrospray mass spectrometry inorganometallic chemistry. Polyhedron 1998, 17, (25), 4291-4313. 30. C. Dass, Fundamentals of Contemporary Mass Spectrometry, 1st Edition, John Wiley & Sons (2007) Hoboken, NJ, U.S.A. 31. Thermo Fisher Scientific, H-ESI Probe User Guide, 2009. 32. Makarov, A., Electrostatic Axially Harmonic Orbital Trapping:  A High-Performance Technique of Mass Analysis. Analytical Chemistry 2000, 72, (6), 1156-1162. 33. E. de Hoffmann, V. S., Mass Spectrometry Principles and Applications, 3rd Edition. John Wiley & Sons 2007, Hoboken, NJ, U.S.A 34. Thermo Fisher Scientific, Q-Exactive Plus Hardware Manual,2013. 35. Person, K., On Lines and Planes of Closest Fit to System of Points in Space.Philioscophical Magazine, 2, 559-572. 1901. 36. Sharma, S., Applied multivariate techniques. John Wiley & Sons, Inc.,1995. 37. Yang, L.; Jin, F.; Zhang, P.; Zhang, Y.; Wang, J.; Shao, H.; Jin, M.; Wang, S.; Zheng, L.; Wang, J., Simultaneous Determination of Perfluorinated Compounds in Edible Oil by Gel-Permeation Chromatography Combined with Dispersive Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry 2015, 63, (38), 8364-8371. 38. Katajamaa, M.; Miettinen, J.; Oresic, M., MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 2006, 22. 39. Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M., MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 2010, 11, (1), 395. 40. Xia, J.; Mandal, R.; Sinelnikov, I. V.; Broadhurst, D.; Wishart, D. S., MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Research 2012, 40, (W1), W127-W133. 41. Linstrom, P. J.; Mallard, W. G., The NIST Chemistry WebBook:  A Chemical Data Resource on the Internet. Journal of Chemical & Engineering Data 2001, 46, (5), 1059-1063. 42. LÉVesque, C. A.; Rahe, J. E.; Eaves, D. M., The effect of soil heat treatment and microflora on the efficacy of glyphosate in seedlings. Weed Research 1992, 32, (5), 363-373. 43. Cecchi, T.; Alfei, B., Volatile profiles of Italian monovarietal extra virgin olive oils via HS-SPME–GC–MS: Newly identified compounds, flavors molecular markers, and terpenic profile. Food Chemistry 2013, 141, (3), 2025-2035. 44. Jeleń, H. H.; Obuchowska, M.; Zawirska-Wojtasiak, R.; Wa̧sowicz, E., Headspace Solid-Phase Microextraction Use for the Characterization of Volatile Compounds in Vegetable Oils of Different Sensory Quality. Journal of Agricultural and Food Chemistry 2000, 48, (6), 2360-2367. 45. Trujillo-Rodríguez, M. J.; Yu, H.; Cole, W. T. S.; Ho, T. D.; Pino, V.; Anderson, J. L.; Afonso, A. M., Polymeric ionic liquid coatings versus commercial solid-phase microextraction coatings for the determination of volatile compounds in cheeses. Talanta 2014, 121, 153-162. 46. Kegley, S.E., Hill, B.R., Orme S., Choi A.H., PAN Pesticide Database, Pesticide Action Network, North America (Oakland, CA, 2016),
dc.description.abstractRecently, the soybean oil is the most useful edible oil in the word. During the soybean cultivation, the herbicides such as glyphosate, glufosinate, and atrazine are widely used for increasing harvest, hence, the low concentration of herbicides may remain in the soybean or soybean oil. Moreover, high temperature thermal processing methods, likes frying and stir-frying, are very popular in traditional Chinese cooking methods. The degradation compounds of glyphosate, glufosinate, and atrazine in soybean oil after thermal processing might cause damage of human health. In this study, LLE-LC-HRMS/MS and HS-SPME-GC-MS methods were developed for identification of degradation products of herbicides in soybean oil after thermal process. Liquid-liquid extraction (LLE) was used as a sample pretreatment in LC-HRMS/MS analysis which standard oil was spkied by herbicides and extracted with 1 mL ACN. The 700 μL supernatants was dried under nitrogen stream then reconstituted with 300 μL MeOH. In headspace solid phase microextraction (HS-SPME), the oil spkied by herbicides incubated at 175℃ then extracted for 30 min. The PCA, the most widely multivariate statistical methods , were used for differentiating the LC-MS and GC-MS data to compare the nonvolatile and volatile compounds between unspiked and spiked standard soybean oil. In LC analysis, 10 degradants of atrazine were found by Compound Discover 2.0 dealing with high resolution data in fried soybean oil. In GC-MS analysis, the degradation compounds were detected in soybean oil spiked with glyphosate, glufosinate, and atrazine after being heated were 6, 6 and 3, respectively. The methods developed in this study can be used for evaduating the degradation of pesticide residues in edible oil after heating processing.en_US
dc.description.abstract本研究利用液液萃取法結合液相層析高解析質譜與頂空固相微萃取法結合氣相層析質譜鑑定大豆油中的微量除草劑經高溫油炸後產生的降解產物與新生成物。本實驗主要比較含有除草劑於食用油加熱前後的差異,再以液液萃取法結合液相層析高解析質譜分析加熱前後 0.5 g 含有嘉磷塞 (10 µg/mL)、固殺草 (2 µg/mL)、草脫凈 (0.25 µg/mL)之標準大豆油,加入 1.0 mL 乙腈,經渦流震盪和離心後取 700 μL 上清液以氮氣吹乾,最後用 300 μL 甲醇回溶。於頂空固相為萃取法結合氣相層析質譜部分,取 4 mL含有嘉磷塞 (10 µg/mL)、固殺草 (2 µg/mL)、草脫凈 (0.25 µg/mL) 之大豆油標準品,分別使用三種萃取纖維PDMS /DVB、CAR/PDMS 及 DVB/CAR/PDMS 進行實驗,於平衡時間 3分鐘、萃取時間 30 分鐘時可以得到最佳的萃取效果。   添加除草劑的大豆油標準品,於加熱前後經探討的最佳萃取條件萃取後,以主成分分析法皆可明確地發現加熱前後大豆油中除草劑的量有明顯差異,其中嘉磷塞和固殺草於加熱後沒有偵測到訊號,草脫淨仍有殘留。接著也比較有無添加除草劑於加熱後的差異,進一步透過統計軟體分析與資料庫搜尋,找出可能的降解及新生成物。實驗結果顯示,液相層析高解析質譜部分找出 10 個草脫淨經油炸後產生之降解產物:Hydroxyatrazine、Desisopropylatrazine、Desethylatrazine、Desethyldesisopropylatrazine、N-Isopropylammelide、Desisopropylhydroxyatrazine、N-Ethylammelide、Desethylhydroxyatrazine、N-Ethyl-N'-isopropyl-1,3,5-triazine-2、4-diamine、Ammeline。氣相層析部分找出6個添加嘉磷塞於油中經加熱產生之揮發性化合物:Pentadecanoic acid、2,5-Furandione, dihydro-3-methylene-、Phenol, 3-methyl-、2-Acetyl-5-methylfuran、Propanediamide、Bis(2-ethylhexyl) phthalate,6個添加固殺草於油中經加熱產生之揮發性化合物:2-Hexanone,4-methyl-、Ethyl N,N-dimethyloxamate、2,3-Butanedione、Nonanoic acid、3,4-Hexanedione、Hexadecanoic acid、methyl ester,3個添加草脫凈於油中經加熱產生之揮發性化合物: 2-Pentanone, 4,4-dimethyl-、Pentanoic acid, 4-oxo-、cis-9-Tetradecen-1-ol。因此可將本研究開發之方法應用於評估食用油中殘留農藥經高溫加熱後產生之降解產物。zh_TW
dc.description.tableofcontents謝誌 i 摘要 ii 中文摘要 iv 目錄 vi 表目錄 xii 圖目錄 xiii 壹、 緒論 1 1.1 前言 1 1.2 除草劑 3 1.3 油炸油反應 6 1.4 降解 6 1.5 固相微萃取法 8 1.6 液液萃取法 19 1.7 質譜術原理 22 1.7.1 氣相層析質譜術 23 氣相層析法 23 電子游離法 24 四極矩質量分析器 25 1.7.2 液相層析高解析串聯質譜術 29 液相層析法 29 電灑游離法 30 軌道阱質量分析器 33 串聯質譜術 36 1.8 主成分分析 39 1.9 研究動機及目的 43 貳、 實驗 44 2.1 藥品、溶劑與試劑 44 2.2 標準品溶液配製 45 2.2.1 1000 μg/mL之儲存溶液之配製 45 2.2.2 100 μg/mL 之標準溶液之配製 45 2.2.3 10 μg/mL 之標準溶液之配製 45 2.3 實驗器材與儀器設備 46 2.4 樣品配置 47 2.4.1 氣相層析部分 47 2.4.2 液相層析部分 47 2.5 氣相層析質譜儀操作參數 48 2.5.1 氣相層析儀 48 2.5.2 四極矩質譜儀 48 2.6 液相層析質譜儀操作參數 49 2.6.1 液相層析條件 49 2.6.2 軌道阱質譜儀 51 2.7 頂空固相微萃取法之最佳化探討 51 2.7.1 固相微萃取纖維活化 51 2.7.2 萃取纖維比較 52 2.7.3 平衡時間最佳化 52 2.7.4 萃取時間最佳化 52 2.8 液液萃取法之草脫凈降解產物最佳化探討 53 2.8.1 萃取溶劑種類之選擇 53 2.8.2 乙腈添加量最佳化 53 2.8.3 上清液體積最佳化 54 2.8.4 回溶溶劑比例最佳化 54 2.9 實驗設計 55 2.10 軟體應用 55 2.10.1 MZmine 2.15 55 2.10.2 MetaboAnalyst 3.0 56 2.10.3 NIST 2.0 57 2.10.4 Compound Discover 2.0 57 2.10.5 Mass Frontier 7.0 57 參、 結果與討論 58 3.1 液相層析部分 58 3.1.1 標準品溶液之層析質譜圖建立 58 3.1.2 液液萃取法之草脫凈降解產物最佳化探討 62 萃取溶劑種類之選擇 62 萃取體積之最佳化探討 64 上清液體積之最佳化探討 64 不同回溶溶劑比例對萃取效果之影響 68 3.1.3 油炸前後對除草劑之影響 68 3.1.4 模擬長時間油炸之變化狀況探討 70 3.2 氣相層析部分 70 3.2.1 頂空固相微萃取法之最佳化條件探討 70 萃取纖維探討 74 平衡時間最佳化探討 74 萃取時間最佳化探討 79 3.3 主成分分析 79 3.3.1 液相層析質譜所得結果 79 加熱前後之主成分分析結果 79 添加除草劑與否之主成分分析結果 81 3.3.2 氣相層析質譜所得結果 85 添加嘉磷塞之主成分分析結果 85 添加固殺草之主成分分析結果 87 添加草脫淨之主成分分析結果 90 3.4 資料庫搜尋結果 92 3.4.1 液相層析串聯質譜得出草脫淨經油炸後非揮發性降解產物 92 3.4.2 氣相層析質譜得出添加除草劑經油炸後揮發性降解產物 103 肆、 結論 106 伍、 參考文獻 108zh_TW
dc.subjectSoybean oilen_US
dc.subjectdegradation productsen_US
dc.titleIdentification of Degradation Products of Herbicides in Soybean Oil after Frying Process by Using LLE-LC-MS/MS and HS-SPME-GC-MSen_US
dc.typethesis and dissertationen_US
Appears in Collections:化學系所


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.