請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/96332
標題: Synthesis of Porphyrins as Hole-Transpoting Materials and Their Applications for Perovskite Solar Cells
紫質電洞材料之合成及其於鈣鈦礦太陽能電池之應用
作者: Wei-Ting Cheng
鄭瑋婷
關鍵字: 鈣鈦礦太陽能電池
紫質電洞材料
Hole-Transpoting Materials
Perovskite Solar Cells
引用: 1. Green, M. A.; Hishikawa, Y.; Warta, W.; Dunlop, E. D.; Levi, D. H.; Hohl‐Ebinger, J.; Ho‐Baillie, A. W. H., Solar cell efficiency tables (version 50). Progress in Photovoltaics: Research and Applications 2017, 25 (7), 668-676. 2. Van Overstraeten, R., Crystalline silicon solar cells. Renewable Energy 1994, 5 (1), 103-106. 3. Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344. 4. Braga, A. F. B.; Moreira, S. P.; Zampieri, P. R.; Bacchin, J. M. G.; Mei, P. R., New processes for the production of solar-grade polycrystalline silicon: A review. Solar Energy Materials and Solar Cells 2008, 92 (4), 418-424. 5. Guha, S.; Yang, J.; Banerjee, A., Amorphous silicon alloy photovoltaic research—present and future. Progress in Photovoltaics: Research and Applications 2000, 8 (1), 141-150. 6. Meyers, P. V.; Albright, S. P., Technical and economic opportunities for CdTe PV at the turn of the millennium. Progress in Photovoltaics: Research and Applications 2000, 8 (1), 161-169. 7. Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H., Photovoltaic Technology: The Case for Thin-Film Solar Cells. Science 1999, 285 (5428), 692. 8. Matsumura, M.; Matsudaira, S.; Tsubomura, H.; Takata, M.; Yanagida, H., Dye Sensitization and Surface Structures of Semiconductor Electrodes. Industrial & Engineering Chemistry Product Research and Development 1980, 19 (3), 415-421. 9. O'Regan, B.; Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 737-740. 10. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society 2005, 127 (48), 16835-16847. 11. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334 (6056), 629. 12. Yella, A.; Mai, C. L.; Zakeeruddin, S. M.; Chang, S. N.; Hsieh, C. H.; Yeh, C. Y.; Grätzel, M., Molecular Engineering of Push–Pull Porphyrin Dyes for Highly Efficient Dye‐Sensitized Solar Cells: The Role of Benzene Spacers. Angewandte Chemie International Edition 2014, 53 (11), 2973-2977. 13. Attfield, J. P.; Lightfoot, P.; Morris, R. E., Perovskites. Dalton Transactions 2015, 44 (23), 10541-10542. 14. Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nat Photon 2014, 8 (7), 506-514. 15. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051. 16. Smith, K. M., Porphyrins and metalloporphyrins. Elsevier Amsterdam: 1975; Vol. 9. 17. Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B. J., High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450. Journal of the American Chemical Society 1981, 103 (10), 2884-2886. 18. Vinogradova, E. V.; Enakieva, Y. Y.; Gorbunova, Y. G.; Tsivadze, A. Y., Synthesis of meso-substituted porphyrins as precursors in creating highly ordered electroluminescent polymer materials. Protection of Metals and Physical Chemistry of Surfaces 2009, 45 (5), 529-534. 19. Simpson, W. T., On the Theory of the π‐Electron System in Porphines. The Journal of Chemical Physics 1949, 17 (12), 1218-1221. 20. Gouterman, M., Spectra of porphyrins. Journal of Molecular Spectroscopy 1961, 6, 138-163. 21. Benoy, M. D.; Mohammed, E. M.; Suresh Babu, M.; Binu, P. J.; Pradeep, B., Thickness dependence of the properties of indium tin oxide (ITO) FILMS prepared by activated reactive evaporation. Brazilian Journal of Physics 2009, 39, 629-632. 22. Kim, H.; Gilmore, C. M.; Piqué, A.; Horwitz, J. S.; Mattoussi, H.; Murata, H.; Kafafi, Z. H.; Chrisey, D. B., Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. Journal of Applied Physics 1999, 86 (11), 6451-6461. 23. Yousaf, S.; Ali, S., The effect of fluorine doping on optoelectronic properties of tin-dioxide (F: SnO2) thin films. Coden. Jnsmac 2008, 48, 43-50. 24. Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; Arakawa, H., Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Solar Energy Materials and Solar Cells 2000, 64 (2), 115-134. 25. Reyes-Coronado, D.; Rodríguez-Gattorno, G.; Espinosa-Pesqueira, M. E.; Cab, C.; Coss, R. d.; Oskam, G., Phase-pure TiO 2 nanoparticles: anatase, brookite and rutile. Nanotechnology 2008, 19 (14), 145605. 26. Tang, H.; Prasad, K.; Sanjinès, R.; Schmid, P. E.; Lévy, F., Electrical and optical properties of TiO2 anatase thin films. Journal of Applied Physics 1994, 75 (4), 2042-2047. 27. Robertson, N., Optimizing Dyes for Dye‐Sensitized Solar Cells. Angewandte Chemie International Edition 2006, 45 (15), 2338-2345. 28. Fattori, A.; Cangiotti, M.; Fiorani, L.; Lucchi, S.; Ottaviani, M. F., Characterization of the TiO2/Dye/Electrolyte Interfaces in Dye-Sensitized Solar Cells by Means of a Titania-Binding Nitroxide. Langmuir 2014, 30 (45), 13570-13580. 29. Mai, C.-L.; Moehl, T.; Hsieh, C.-H.; Décoppet, J.-D.; Zakeeruddin, S. M.; Grätzel, M.; Yeh, C.-Y., Porphyrin Sensitizers Bearing a Pyridine-Type Anchoring Group for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2015, 7 (27), 14975-14982. 30. Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z., Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today 2015, 18 (3), 155-162. 31. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; CurchodBasile, F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; NazeeruddinMd, K.; Grätzel, M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 2014, 6 (3), 242-247. 32. Fukui, A.; Komiya, R.; Yamanaka, R.; Islam, A.; Han, L., Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell. Solar Energy Materials and Solar Cells 2006, 90 (5), 649-658. 33. Boschloo, G.; Häggman, L.; Hagfeldt, A., Quantification of the Effect of 4-tert-Butylpyridine Addition to I-/I3- Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells. The Journal of Physical Chemistry B 2006, 110 (26), 13144-13150. 34. Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Arakawa, H., Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells. Solar Energy Materials and Solar Cells 2001, 70 (2), 151-161. 35. Park, N. G.; van de Lagemaat, J.; Frank, A. J., Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells. The Journal of Physical Chemistry B 2000, 104 (38), 8989-8994. 36. Roy-Mayhew, J. D.; Bozym, D. J.; Punckt, C.; Aksay, I. A., Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. ACS Nano 2010, 4 (10), 6203-6211. 37. Hong, W.; Xu, Y.; Lu, G.; Li, C.; Shi, G., Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications 2008, 10 (10), 1555-1558. 38. Wei, W.; Wang, H.; Hu, Y. H., A review on PEDOT-based counter electrodes for dye-sensitized solar cells. International Journal of Energy Research 2014, 38 (9), 1099-1111. 39. Li, L.-L.; Chang, Y.-C.; Wu, H.-P.; Diau, E. W.-G., Characterisation of electron transport and charge recombination using temporally resolved and frequency-domain techniques for dye-sensitised solar cells. International Reviews in Physical Chemistry 2012, 31 (3), 420-467. 40. Grätzel, M., Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry 2005, 44 (20), 6841-6851. 41. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells. Chemical Reviews 2010, 110 (11), 6595-6663. 42. Kippelen, B.; Bredas, J.-L., Organic photovoltaics. Energy & Environmental Science 2009, 2 (3), 251-261. 43. El Chaar, L.; lamont, L. A.; El Zein, N., Review of photovoltaic technologies. Renewable and Sustainable Energy Reviews 2011, 15 (5), 2165-2175. 44. Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society 2001, 123 (8), 1613-1624. 45. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Gratzel, M., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater 2003, 2 (6), 402-407. 46. Cao, Y.; Bai, Y.; Yu, Q.; Cheng, Y.; Liu, S.; Shi, D.; Gao, F.; Wang, P., Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine. The Journal of Physical Chemistry C 2009, 113 (15), 6290-6297. 47. Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G.; Zakeeruddin, S. M.; Grätzel, M., Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano 2009, 3 (10), 3103-3109. 48. Tsao, H. N.; Burschka, J.; Yi, C.; Kessler, F.; Nazeeruddin, M. K.; Gratzel, M., Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energy & Environmental Science 2011, 4 (12), 4921-4924. 49. Yao, Z.; Zhang, M.; Wu, H.; Yang, L.; Li, R.; Wang, P., Donor/Acceptor Indenoperylene Dye for Highly Efficient Organic Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2015, 137 (11), 3799-3802. 50. Kay, A.; Graetzel, M., Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. The Journal of Physical Chemistry 1993, 97 (23), 6272-6277. 51. Clifford, J. N.; Yahioglu, G.; Milgrom, L. R.; Durrant, J. R., Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 films. Chemical Communications 2002, (12), 1260-1261. 52. Nazeeruddin, M. K.; Humphry-Baker, R.; Officer, D. L.; Campbell, W. M.; Burrell, A. K.; Grätzel, M., Application of Metalloporphyrins in Nanocrystalline Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity. Langmuir 2004, 20 (15), 6514-6517. 53. Eu, S.; Hayashi, S.; Umeyama, T.; Oguro, A.; Kawasaki, M.; Kadota, N.; Matano, Y.; Imahori, H., Effects of 5-Membered Heteroaromatic Spacers on Structures of Porphyrin Films and Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells. The Journal of Physical Chemistry C 2007, 111 (8), 3528-3537. 54. Hayashi, S.; Tanaka, M.; Hayashi, H.; Eu, S.; Umeyama, T.; Matano, Y.; Araki, Y.; Imahori, H., Naphthyl-Fused π-Elongated Porphyrins for Dye-Sensitized TiO2 Cells. The Journal of Physical Chemistry C 2008, 112 (39), 15576-15585. 55. Tanaka, M.; Hayashi, S.; Eu, S.; Umeyama, T.; Matano, Y.; Imahori, H., Novel unsymmetrically [small pi]-elongated porphyrin for dye-sensitized TiO2 cells. Chemical Communications 2007, (20), 2069-2071. 56. Lu, H.-P.; Tsai, C.-Y.; Yen, W.-N.; Hsieh, C.-P.; Lee, C.-W.; Yeh, C.-Y.; Diau, E. W.-G., Control of Dye Aggregation and Electron Injection for Highly Efficient Porphyrin Sensitizers Adsorbed on Semiconductor Films with Varying Ratios of Coadsorbate. The Journal of Physical Chemistry C 2009, 113 (49), 20990-20997. 57. Hsieh, C.-P.; Lu, H.-P.; Chiu, C.-L.; Lee, C.-W.; Chuang, S.-H.; Mai, C.-L.; Yen, W.-N.; Hsu, S.-J.; Diau, E. W.-G.; Yeh, C.-Y., Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry 2010, 20 (6), 1127-1134. 58. Bessho, T.; Zakeeruddin, S. M.; Yeh, C. Y.; Diau, E. W. G.; Grätzel, M., Highly Efficient Mesoscopic Dye‐Sensitized Solar Cells Based on Donor–Acceptor‐Substituted Porphyrins. Angewandte Chemie International Edition 2010, 49 (37), 6646-6649. 59. Lee, C. W.; Lu, H. P.; Lan, C. M.; Huang, Y. L.; Liang, Y. R.; Yen, W. N.; Liu, Y. C.; Lin, Y. S.; Diau, E. W. G.; Yeh, C. Y., Novel Zinc Porphyrin Sensitizers for Dye‐Sensitized Solar Cells: Synthesis and Spectral, Electrochemical, and Photovoltaic Properties. Chemistry - A European Journal 2009, 15 (6), 1403-1412. 60. Mai, C.-L.; Huang, W.-K.; Lu, H.-P.; Lee, C.-W.; Chiu, C.-L.; Liang, Y.-R.; Diau, E. W.-G.; Yeh, C.-Y., Synthesis and characterization of diporphyrin sensitizers for dye-sensitized solar cells. Chemical Communications 2010, 46 (5), 809-811. 61. Jiao, C.; Zu, N.; Huang, K.-W.; Wang, P.; Wu, J., Perylene Anhydride Fused Porphyrins as Near-Infrared Sensitizers for Dye-Sensitized Solar Cells. Organic Letters 2011, 13 (14), 3652-3655. 62. Chang, Y.-C.; Wang, C.-L.; Pan, T.-Y.; Hong, S.-H.; Lan, C.-M.; Kuo, H.-H.; Lo, C.-F.; Hsu, H.-Y.; Lin, C.-Y.; Diau, E. W.-G., A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chemical Communications 2011, 47 (31), 8910-8912. 63. Wang, C.-L.; Lan, C.-M.; Hong, S.-H.; Wang, Y.-F.; Pan, T.-Y.; Chang, C.-W.; Kuo, H.-H.; Kuo, M.-Y.; Diau, E. W.-G.; Lin, C.-Y., Enveloping porphyrins for efficient dye-sensitized solar cells. Energy & Environmental Science 2012, 5 (5), 6933-6940. 64. Chou, H.-H.; Reddy, K. S. K.; Wu, H.-P.; Guo, B.-C.; Lee, H.-W.; Diau, E. W.-G.; Hsu, C.-P.; Yeh, C.-Y., Influence of Phenylethynylene of Push–Pull Zinc Porphyrins on the Photovoltaic Performance. ACS Applied Materials & Interfaces 2016, 8 (5), 3418-3427. 65. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 2014, 7 (3), 982-988. 66. Leijtens, T.; Ding, I. K.; Giovenzana, T.; Bloking, J. T.; McGehee, M. D.; Sellinger, A., Hole Transport Materials with Low Glass Transition Temperatures and High Solubility for Application in Solid-State Dye-Sensitized Solar Cells. ACS Nano 2012, 6 (2), 1455-1462. 67. Zhao, D.; Sexton, M.; Park, H. Y.; Baure, G.; Nino, J. C.; So, F., High‐Efficiency Solution‐Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer. Advanced Energy Materials 2015, 5 (6). 68. Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. 2013, 4, 2761. 69. Gheno, A.; Vedraine, S.; Ratier, B.; Bouclé, J., π-Conjugated Materials as the Hole-Transporting Layer in Perovskite Solar Cells. Metals 2016, 6 (1). 70. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. 2012, 2, 591. 71. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338 (6107), 643. 72. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Interface engineering of highly efficient perovskite solar cells. Science 2014, 345 (6196), 542. 73. Chou, H.-H.; Chiang, Y.-H.; Li, M.-H.; Shen, P.-S.; Wei, H.-J.; Mai, C.-L.; Chen, P.; Yeh, C.-Y., Zinc Porphyrin–Ethynylaniline Conjugates as Novel Hole-Transporting Materials for Perovskite Solar Cells with Power Conversion Efficiency of 16.6%. ACS Energy Letters 2016, 1 (5), 956-962. 74. Chen, S.; Liu, P.; Hua, Y.; Li, Y.; Kloo, L.; Wang, X.; Ong, B.; Wong, W.-K.; Zhu, X., Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (15), 13231-13239. 75. Kang, J.; Shin, N.; Jang, D. Y.; Prabhu, V. M.; Yoon, D. Y., Structure and Properties of Small Molecule−Polymer Blend Semiconductors for Organic Thin Film Transistors. Journal of the American Chemical Society 2008, 130 (37), 12273-12275. 76. Guan, Y.; López‐Alberca, M. P.; Lu, Z.; Zhang, Y.; Desai, A. A.; Patwardhan, A. P.; Dai, Y.; Vetticatt, M. J.; Wulff, W. D., Catalytic Asymmetric Synthesis of Alkynyl Aziridines: Both Enantiomers of cis‐Aziridines from One Enantiomer of the Catalyst. Chemistry - A European Journal 2014, 20 (43), 13894-13900. 77. Ka, J.-W.; Lee, C.-H., Optimizing the synthesis of 5,10-disubstituted tripyrromethanes. Tetrahedron Letters 2000, 41 (23), 4609-4613. 78. Hori, H.; Nagasawa, H.; Ishibashi, M.; Uto, Y.; Hirata, A.; Saijo, K.; Ohkura, K.; Kirk, K. L.; Uehara, Y., TX-1123: an antitumor 2-hydroxyarylidene-4-cyclopentene-1,3-dione as a protein tyrosine kinase inhibitor having low mitochondrial toxicity. Bioorganic & Medicinal Chemistry 2002, 10 (10), 3257-3265. 79. John Plater, M.; Aiken, S.; Bourhill, G., Metallated porphyrins containing lead(II), copper(II) or zinc(II). Tetrahedron 2002, 58 (12), 2415-2422. 80. Krivokapic, A.; Cowley, A. R.; Anderson, H. L., Contracted and Expanded meso-Alkynyl Porphyrinoids:  from Triphyrin to Hexaphyrin. The Journal of Organic Chemistry 2003, 68 (3), 1089-1096. 81. Gou, F.; Jiang, X.; Fang, R.; Jing, H.; Zhu, Z., Strategy to Improve Photovoltaic Performance of DSSC Sensitized by Zinc Prophyrin Using Salicylic Acid as a Tridentate Anchoring Group. ACS Applied Materials & Interfaces 2014, 6 (9), 6697-6703. 82. Cheng, F.; Zhang, S.; Adronov, A.; Echegoyen, L.; Diederich, F., Triply Fused ZnII–Porphyrin Oligomers: Synthesis, Properties, and Supramolecular Interactions with Single‐Walled Carbon Nanotubes (SWNTs). Chemistry - A European Journal 2006, 12 (23), 6062-6070. 83. Diev, V. V.; Hanson, K.; Zimmerman, J. D.; Forrest, S. R.; Thompson, M. E., Fused Pyrene–Diporphyrins: Shifting Near‐Infrared Absorption to 1.5 μm and Beyond. Angewandte Chemie 2010, 122 (32), 5655-5658. 84. Monnereau, C.; Blart, E.; Montembault, V.; Fontaine, L.; Odobel, F., Synthesis of new crosslinkable co-polymers containing a push–pull zinc porphyrin for non-linear optical applications. Tetrahedron 2005, 61 (42), 10113-10121. 85. Morisue, M.; Hoshino, Y.; Shimizu, K.; Shimizu, M.; Kuroda, Y., Self-complementary double-stranded porphyrin arrays assembled from an alternating pyridyl-porphyrin sequence. Chemical Science 2015, 6 (11), 6199-6206. 86. Tylleman, B.; Gbabode, G.; Amato, C.; Buess-Herman, C.; Lemaur, V.; Cornil, J.; Gómez Aspe, R.; Geerts, Y. H.; Sergeyev, S., Metal-Free Phthalocyanines Bearing Eight Alkylsulfonyl Substituents: Design, Synthesis, Electronic Structure, and Mesomorphism of New Electron-Deficient Mesogens. Chemistry of Materials 2009, 21 (13), 2789-2797. 87. Watanabe, K.; Sasaki, K.; Kobayashi, K., Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-absorbed electrode, and method for manufacturing dye-sensitized solar cell. Google Patents: 2015. 88. Yang, W.; Zhao, J.; Sonn, C.; Escudero, D.; Karatay, A.; Yaglioglu, H. G.; Küçüköz, B.; Hayvali, M.; Li, C.; Jacquemin, D., Efficient Intersystem Crossing in Heavy-Atom-Free Perylenebisimide Derivatives. The Journal of Physical Chemistry C 2016, 120 (19), 10162-10175. 89. Ge, Z.; Zhang, X.; Chen, S.; Liu, Y.; Peng, R.; Yokazawa, T., Synthesis and tunable ion-recognition properties of novel macrocyclic triamides. Tetrahedron 2014, 70 (35), 5730-5738. 90. Yang, H.; Li, Y.; Jiang, M.; Wang, J.; Fu, H., General Copper‐Catalyzed Transformations of Functional Groups from Arylboronic Acids in Water. Chemistry - A European Journal 2011, 17 (20), 5652-5660. 91. Chen, X.; Chen, X.; Zhao, Z.; LÜ, P.; Wang, Y., 2,4‐Dicyano‐3‐diethylamino‐9,9‐diethylfluorene Based Blue Light‐emitting Star‐shaped Compounds: Synthesis and Properties. Chinese Journal of Chemistry 2009, 27 (5), 971-977. 92. Balaz, M.; Collins, H. A.; Dahlstedt, E.; Anderson, H. L., Synthesis of hydrophilic conjugated porphyrin dimers for one-photon and two-photon photodynamic therapy at NIR wavelengths. Organic & Biomolecular Chemistry 2009, 7 (5), 874-888. 93. Zhang, T.-G.; Zhao, Y.; Asselberghs, I.; Persoons, A.; Clays, K.; Therien, M. J., Design, Synthesis, Linear, and Nonlinear Optical Properties of Conjugated (Porphinato)zinc(II)-Based Donor−Acceptor Chromophores Featuring Nitrothiophenyl and Nitrooligothiophenyl Electron-Accepting Moieties. Journal of the American Chemical Society 2005, 127 (27), 9710-9720. 94.National Renewable Energy Laboratory
摘要: The tremendous consuming of fossil fuel to the human community has lead to energy crisis and drawn people's attention to the environmental issue as well as the searching for alternative energy resources. Solar energy is a powerful and fascinating energy resource for the viewpoint of either research or development. Based on this, perovskite solar cells(PSCs)has recently become one of the fascinating solar energy-harvesting technologies which drives us to study. This thesis focuses on the design and synthesis of porphyrin-based hole-transporting materials (HTMs) for the applications in PSCs. We have synthesized dimeric porphyrin WT3 which is based on high-efficiency monomeric porphyrin Y2 recently devised by our group. Both HTMs has the D-π-D type molecular structure. Compare to Y2, WT3 has broader UV-vis absorption, stabilized HOMO and porphyrin moiety bearing good hole-transporting ability. This advantages are believed to benefit both the open-circuit voltage (VOC) and short-circuit current (JSC) of the corresponding PSC devices. As a result, WT3 has high power conversion efficiency of 19.4%, outperforms that based on Y2 of 17.9% or Spiro-OMeTAD. We have also synthesized a series of D-π-A type porphyrin HTMs WT4 ~ WT9, where donor (D) represents substituted dialkylaniline donor and acceptor (A) represents either the methyl benzoate or dicyanovinyl groups. Due to the functionalization of electron-accepting groups, these series of HTMs feature lowered LUMO level and narrower bandgap. Interestingly, HTMs WT4 ~ WT6 have PCE of 13.4 ~ 16.5% thank to suitable HOMO levels. Unfortunately, HTMs WT7 ~ WT9 have poorer performance with PCE are less than 8 % possibly owing to too low of the corresponding HOMO levels. In conclusion, the perfect matching of HOMO levels for HTMs with that for perovskite is very important.
人類因消耗大量的能源而造成石油危機,因此開始逐漸注重環保議題,發展其他替代能源。而太陽能的應用在市場上是極具發展潛力的,其中鈣鈦礦太陽能電池(perovskite solar cells)的發展非常迅速,故我們將對其進行更深入研究。 本篇論文主旨在研究應用於鈣鈦礦太陽能電池之紫質電洞傳輸材料(HTMs)。基於最近由本實驗室所開發新穎D-π-D結構之單紫質HTM(Y2),進一步設計並合成出更高效率的D-π-D雙紫質HTM(WT3)。由於WT3具有更寬廣的光譜吸收與更低的HOMO能階,且具有電動傳導特性良好之紫質基團,故其作為HTM具有相當高的開路電壓(VOC)及短路電流(JSC)。WT3的光電轉換效率(PCE)可達19.4 %,此結果更優於Y2的17.9% 以及Spiro-OMeTAD的18.6 %。 此外,我們也合成出一系列D-π-A單紫質HTM材料(WT4 ~ WT9),其中D為多取代推電子苯胺基、A為拉電子苯酸甲酯基或二氰基乙烯基。由於具有拉電子取代基,因此本系列HTM相較於Y2皆有較低之LUMO及較寬廣的光譜吸收。藉由Donor結構設計上引入的methoxy group,以調整鈣鈦礦層之HOMO及LUMO能階,提升VOC值及幫助電動傳導(hole-transporting)的效果。其中,WT4 ~ WT6 因有適當的HOMO能階而有較佳之元件表現,其PCE在13.4 ~ 16.5 %之間。而WT7 ~ WT9 可能由於能階過低不利於電動傳導的關係,而降低了元件效率,其PCE 皆不到8 %。本篇論文的成果說明了紫質材料的HOMO能階與鈣鈦礦的能階是否匹配是極為重要的。
URI: http://hdl.handle.net/11455/96332
文章公開時間: 2020-08-07
顯示於類別:化學系所

文件中的檔案:
檔案 大小格式 
nchu-106-7104051089-1.pdf9.52 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。