請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/96334
標題: Development of method for preparation of surface-enhanced substrate based on chemical techniques of chemical plating, imprinting and etching
綜合化學鍍金法、模板轉印法以及化學侵蝕法製備表面訊號增益基板之效果探討
作者: Yi-Cun Ye
葉奕村
關鍵字: 化學鍍金法
模板轉印
化學侵蝕法
表面訊號增益基板
surface-enhanced substrate
chemical plating, imprinting and etching
引用: 1 C. L. Haynes, and R. P. Van Duyne, 'Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics', Journal of Physical Chemistry B, 105 (2001), 5599-611. 2 S. A. Pergantis, T. L. Jones-Lepp, and E. M. Heithmar, 'Hydrodynamic Chromatography Online with Single Particle-Inductively Coupled Plasma Mass Spectrometry for Ultratrace Detection of Metal-Containing Nanoparticles', Analytical Chemistry, 84 (2012), 6454-62. 3 K. A. Willets, and R. P. Van Duyne, 'Localized Surface Plasmon Resonance Spectroscopy and Sensing', Annual Review of Physical Chemistry, 58 (2007), 267-97. 4 A. Campion, and P. Kambhampati, 'Surface-Enhanced Raman Scattering', Chemical Society Reviews, 27 (1998), 241-50. 5 M. Moskovits, 'Surface-Enhanced Spectroscopy', Reviews of Modern Physics, 57 (1985), 783-826. 6 M. Moskovits, 'Surface-Enhanced Raman Spectroscopy: A Brief Retrospective', Journal of Raman Spectroscopy, 36 (2005), 485-96. 7 M. Sawa, K. I. Ataka, M. Ikeda, H. Uchihara, and R. Nanba, 'Surface Enhanced Infrared Absorption Spectroscopy: Mechanism and Application to Trace Analysis', Analytical Sciences, 7 (1991), 503-06. 8 B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, 'Sers: Materials, Applications, and the Future', Materials Today, 15 (2012), 16-25. 9 M. K. Fan, G. F. S. Andrade, and A. G. Brolo, 'A Review on the Fabrication of Substrates for Surface Enhanced Raman Spectroscopy and Their Applications in Analytical Chemistry', Analytica Chimica Acta, 693 (2011), 7-25. 10 C. Muehlethaler, M. Leona, and J. R. Lombardi, 'Review of Surface Enhanced Raman Scattering Applications in Forensic Science', Analytical Chemistry, 88 (2016), 152-69. 11 P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayad, 'Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems', Plasmonics, 2 (2007), 107-18. 12 Mehmet V Yigit, and Zdravka Medarova, 'In Vivo and Ex Vivo Applications of Gold Nanoparticles for Biomedical Sers Imaging', Am J Nucl Med Mol Imaging, 2 (2012), 232-41. 13 Y. Q. Cao, D. Li, F. Jiang, Y. Yang, and Z. R. Huang, 'Engineering Metal Nanostructure for Sers Application', Journal of Nanomaterials (2013). 14 W. Lukosz, 'Integrated Optical Chemical and Direct Biochemical Sensors', Sensors and Actuators B-Chemical, 29 (1995), 37-50. 15 R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, 'Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles', Science, 277 (1997), 1078-81. 16 Y. Q. Yang, S. F. Wang, Z. Y. Sun, and D. D. Dlott, 'Near-Infrared and Visible Absorption Spectroscopy of Nano-Energetic Materials Containing Aluminum and Boron', Propellants Explosives Pyrotechnics, 30 (2005), 171-77. 17 T. Liebermann, and W. Knoll, 'Surface-Plasmon Field-Enhanced Fluorescence Spectroscopy', Colloids and Surfaces a-Physicochemical and Engineering Aspects, 171 (2000), 115-30. 18 M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, 'Raman-Spectra of Pyridine Adsorbed at a Silver Electrode', Chemical Physics Letters, 26 (1974), 163-66. 19 D. L. Jeanmaire, and R. P. Vanduyne, 'Surface Raman Spectroelectrochemistry .1. Heterocyclic, Aromatic, and Aliphatic-Amines Adsorbed on Anodized Silver Electrode', Journal of Electroanalytical Chemistry, 84 (1977), 1-20. 20 M. G. Albrecht, and J. A. Creighton, 'Anomalously Intense Raman-Spectra of Pyridine at a Silver Electrode', Journal of the American Chemical Society, 99 (1977), 5215-17. 21 H. Steinberg, D. R. Gardner, Y. S. Lee, and P. Jarillo-Herrero, 'Surface State Transport and Ambipolar Electric Field Effect in Bi2se3 Nanodevices', Nano Letters, 10 (2010), 5032-36. 22 A. Hartstein, J. R. Kirtley, and J. C. Tsang, 'Enhancement of the Infrared-Absorption from Molecular Monolayers with Thin Metal Overlayers', Physical Review Letters, 45 (1980), 201-04. 23 S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, 'Tailoring Plasmonic Substrates for Surface Enhanced Spectroscopies', Chem Soc Rev, 37 (2008), 898-911. 24 Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, 'Surface-Enhanced Molecular Spectroscopy (Sems) Based on Perfect-Absorber Metamaterials in the Mid-Infrared', Sci Rep, 3 (2013), 2865. 25 M. Osawa, 'Surface-Enhanced Infrared Absorption', Near-Field Optics and Surface Plasmon Polaritons, 81 (2001), 163-87. 26 K. Ataka, and J. Heberle, 'Biochemical Applications of Surface-Enhanced Infrared Absorption Spectroscopy', Analytical and Bioanalytical Chemistry, 388 (2007), 47-54. 27 C. Y. Jing, and Y. Fang, 'Simple Method for Electrochemical Preparation of Silver Dendrites Used as Active and Stable Sers Substrate', Journal of Colloid and Interface Science, 314 (2007), 46-51. 28 L. L. Bao, S. M. Mahurin, C. D. Liang, and S. Dai, 'Study of Silver Films over Silica Beads as a Surface-Enhanced Raman Scattering (Sers) Substrate for Detection of Benzoic Acid', Journal of Raman Spectroscopy, 34 (2003), 394-98. 29 P. R. Brejna, P. R. Griffiths, and J. Yang, 'Nanostructural Silver and Gold Substrates for Surface-Enhanced Raman Spectroscopy Measurements Prepared by Galvanic Displacement on Germanium Disks', Applied Spectroscopy, 63 (2009), 396-400. 30 M. L. Cheng, B. C. Tsai, and J. Yang, 'Silver Nanoparticle-Treated Filter Paper as a Highly Sensitive Surface-Enhanced Raman Scattering (Sers) Substrate for Detection of Tyrosine in Aqueous Solution', Analytica Chimica Acta, 708 (2011), 89-96. 31 D. Mijatovic, J. C. T. Eijkel, and A. van den Berg, 'Technologies for Nanofluidic Systems: Top-Down Vs. Bottom-up - a Review', Lab on a Chip, 5 (2005), 492-500. 32 S. Wijesuriya, K. Burugapalli, R. Mackay, G. C. Ajaezi, and W. Balachandran, 'Chemically Roughened Solid Silver: A Simple, Robust and Broadband Sers Substrate', Sensors, 16 (2016). 33 M. S. Goh, Y. H. Lee, S. Pedireddy, I. Y. Phang, W. W. Tjiu, J. M. R. Tan, and X. Y. Ling, 'A Chemical Route to Increase Hot Spots on Silver Nanowires for Surface-Enhanced Raman Spectroscopy Application', Langmuir, 28 (2012), 14441-49.
摘要: In this study, a new method to prepare surface-enhanced active substrate was proposed. In this method, continuous silver thin films and discontinuous silver nanoparticles (AgNPs) were prepared on glass plate were transferred to a polymer solid support for chemical etching to form surface-enhanced active substrate. With this transferring technique, the instability of silver thin film or AgNPs on glass plate during chemical etching could be overcome. UV glue was used as polymer solid support because it interacts strongly with silver and the polymerization is simple via an UV irradiation. The strong interaction between UV glue and silver thin film or AgNPs allows further treatment by chemical etching during preparation of surface-enhanced active substrates. The detail influences in preparation of surface-enhanced active substrate was systematically studied. For silver thin film on glass, the formula to prepare hollow waveguide was used and modified. The effects of agitation and sensitizer were studied and the results indicated that the reaction solution requires stirring but the speed is not critical. Also, the silver plating efficiency is high as continuous thin films can be formed within 1 min. For AgNPs, the formula to prepare SERS active substrate was used directly but the effect of reaction time was studied. After transferring silver thin film or AgNPs from glass plate to UV glue, the formed Ag@UV film was subjected to 8 M nitric acid to partially etch the silver thin film or the AgNPs. Results indicate that silver thin film or AgNPs on UV glue could be partially removed to form surface-enhanced active substrate for SERS measurement. The SERS performance is worse than method based on conventional silver mirror reaction. However, the adjustable physical property of UV glue allows a much better design for SERS measurements.
本研究開發出簡易的化學製備法成功製備出高平整度銀膜,再進一步結合模板轉印技術以及化學侵蝕法後,更成功應用到表面增強拉曼散射(Surface Enhanced Raman Scattering, SERS)基板的製備上。開發的方法首先製備出連續銀膜與銀奈米粒基板後再透過轉印方式,轉印到高分子基材上,形成的轉印基板穩定性高,可以再利用硝酸侵蝕出具表面訊號增益現象的銀奈米基板。此方法主要能克服一般修飾銀奈米粒在固體支撐基板上不耐化學侵蝕之特性,如銀與玻璃間作用力弱導致常導致大片銀粒剝落,而無法精確觀察出硝酸的對銀的侵蝕效果;轉印高分子採用UV膠水,主因乃UV膠以紫外光照射即可快速固化,且容易與銀金屬作用不易與支撐固體基板作用,因此固化後穩定但又可以輕易的將銀從原基板轉移出來貼覆到固化UV膠上。 為了解各種因子對轉印侵蝕法製作表面訊號增益基板的影響,本研究首先開發製作銀連續模修飾基板以及銀奈米粒修飾基板的方法,且分別探討影響因子的貢獻,接著探討銀連續模修飾基板以及銀奈米粒修飾基板的轉印效果,並進一步探討轉印後基板以酸蝕法製作出表面訊號增益基板的效果。結果顯示,利用銀鏡反應可以在玻璃基板上製備出高反射率的連續銀膜,透過測試各個製備因子對連續膜製作的影響,如反應液濃度,磁石攪拌速度,敏化劑的濃度等,都能夠簡單製成高反射率的連續銀膜,且反應時間短不超過1分鐘。而銀奈米粒的製作是直接參考文獻的方法但是反應時間上的條件選用有所不同。銀奈米粒轉移後用硝酸侵蝕並沒有明顯提升拉曼訊號,而在使用8 M硝酸做侵蝕時,UV膠表面的銀層才被快速溶解掉。整體研究結果而言,新方法克服了化學侵蝕法不穩定的缺點,也顯示此種方法具有成為製備表面訊號增益基板的潛力。
URI: http://hdl.handle.net/11455/96334
文章公開時間: 2017-08-31
顯示於類別:化學系所

文件中的檔案:
檔案 大小格式 
nchu-106-7104051112-1.pdf5.9 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。