請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/96335
標題: Preparation of Pt3Ni(Pt-skin) thin layer modified Pd/C oxygen reaction electrocatalysts
製備Pt3Ni(白金皮層)薄層修飾Pd/C作為氧氣還原反應之電催化劑
作者: Po-Kai Tseng
曾柏凱
關鍵字: 氧氣還原反應
低電位沉積
賈凡尼置換法
oxygen reduction reaction
underpotential deposition
galvanic replacement
引用: (1)R. N. Basu, In Recent trends in fuel cell science and technology, 2007, 286-331. (2)P. B. High, The Imperial screen: Japanese film culture in the Fifteen years' war, 2003, 1931-1945. (3)M. Winter, R. J. Brodd, Chem. Rev. 2004, 104, 4245-4270. (4)K. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science, 2009, 323, 760. (5)Y. J. Feng, Alonso-Vante, N. Phys. Status Solidi B: Basic Solid State Phys, 2008, 245, 1792-1806. (6)F. Jaouen, E. Proietti, Lefevre, M. Lefevre, R. Chenitz, J. P. Dodelet, G. Wu, H. T. Chung, C. M. Johnston, P. Zelenay, Energy Environ. Sci., 2011, 4, 114-130. (7)C. W. B. Bezerra, L. Zhang, K. C. Lee, H. S. Liu, A. L. B. Marques, E. P. Marques, H. J. Wang, J. J. Zhang, Electrochim. Acta, 2008, 53,4937-4951. (8)Z. W. Chen, D. Higgins, A. P. Yu, L. Zhang, J. J. Zhang, energy Environ. Sci., 2011, 4, 3167-3192. (9)R. Othman, A. L. Dicks, Z. H. Zhu, Int. J. Hydrogen Energy, 2012,37, 357-392. (10)G. Wu, P. Zelenay, Acc. Chem. Res., 2013, 46, 1878-1889. (11)C. Chen, Y. J. Kang, Z. Y. Huo, Z. W. Zhu, W. Y. Huang, H. L. L. Xin, J. D. Snyder, D. G. Li, J. A. Herron, M. Mavrikakis, M. F. Chi, K. L. More, Y. D. Li, N. M. Markovic, G. A. Somorjai, P. D. Yang, V. R. Stamenkovic, Science, 2014, 343, 1339-1343. (12)F. Maroun, F. Ozanam, O. M. Magnussen, R. J. Behm, Science, 2001, 293, 1811-1814. (13)F. Hasche, M. Oezaslan, P. Strasser, J. Electrochem. Soc., 2012, 159, B24−B33. (14)M. Heggen, M. Oezaslan, L. Houben, P. Strasser, J. Phys. Chem. C, 2012, 116, 19073−19083. (15)K. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science, 2009, 323, 760-764. (16)F. Bidault, D.J.L. Brett, P.H. Middleton, N.P. Brandon, J. Power Sources, 2009, 187, 39-48. (17)E. B. Yeager, Electrochim. Acta, 1987, 29, 1527-1537. (18)J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, J. Phys. Chem. B, 2004, 108, 17886-17892. (19)H. A. Hansen, V. Viswanathan, J. K. Nørskov, J. Phys. Chem. C, 2014, 118, 6706-6718. (20)J. Rossmeisl, J. K. Nørskov, Surf. Sci., 2008, 602, 2337-2338. (21)V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Nørskov, Angew. Chem., 2006, 45, 2963-2967. (22)Y. Bing, H. Liu, L. Zhang, J. Zhang, Chem. Soc. Rev., 2010, 39, 2184-2202. (23)H. Zhang, Y. Xia, Chem. Soc. Rev., 2012, 41, 8035-8049. (24)T. Zhang, A. B. Anderson, Electrochim. Acta, 2007,53, 982-989. (25)C. Hartnig, M. T. M. Koper, J. Electroanal. Chem., 2002,532, 165-170. (26)T. Toda, H. Igarashi, H. Uchida, M. Watanabe, J. Electrochem. Soc., 1999, 146, 3750-3756. (27)J. X. Wang, J. Zhang, R. R. Adzic, J. Phys. Chem. A, 2007, 111,12702-12710. (28)Y. Sha, T. H. Yu, B. V. Merinov, P. Shirvanian, W. A. Goddard, J. Phys. Chem. Lett., 2011, 2, 572-576. (29)N. M. Markovic, P. N. Ross, Surf. Sci. Rep., 2002,45, 117-229. (30)M. K. Debe, Nature, 2012, 486, 43−51. (31) http://en.wikipedia.org/wiki/File:Solid_oxide_fuel_cell.svg. (32)P. C. K. Vesborg, T. F. Jaramillo, RSC Adv. 2012, 2, 7933−7947. (33)K. B. Wipke, S. Sprik, J. Kurtz, T. Ramsden, Controlled hydrogen fleet and infrastructure analysis. National Renewable Energy Laboratory, 2008. (34)H. A. Gasteiger, S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B, 2005, 56, 9-35. (35)M. K. Debe, Journal of Power Sources, 2006,161, 1002–1011. (36)S.D. Knights Journal of Power Sources, 2004,127, 127–134. (37)Y. S. Horn, W.C. Sheng, S. Chen, P.J. Ferreira, E.F. Holby, D. Morgan, Top. Catal., 2007, 46, 285-305. (38)P.J. Ferreira, G.J. Ia O', Y. S. Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, J. Electrochem. Soc., 2005, 152, A2256-A2271. (39)Y. S. Horn, W.C. Sheng, S. Chen, P.J. Ferreira, E.F. Holby, D. Morgan, Top. Catal., 2007, 46, 285-305. (40)Department of Energy. Multi-Year Research, Development and Demonstration Plan; http://www.eere.energy.gov, 2014. (41)N. M. Markovic, T. J. Schmidt, V. Stamenkovic, P. N. Ross, Fuel Cells, 2001, 1, 105−116. (42)A. M. Gomez-Marín, J. M. Feliu, Catal. Today 2015,244, 172−176 (43)N. Hoshi, M. Nakamura, A. Hitotsuyanagi, Electrochim. Acta, 2013, 112, 899−904. (44)A. Kuzume, E. Herrero, J. M. Feliu, J. Electroanal. Chem., 2007,599 (2), 333−343. (45)Q. S. Chen, F. J. Vidal-Iglesias, J. Solla-Gullon, S. G. Sun, J. M. Feliu, Chem. Sci. 2012, 3, 136−147. (46)M. Shao, A. Peles, K. Shoemaker, Nano Lett. 2011, 11, 3714−3719. (47)V. Tripkovic, I. Cerri, T. Bligaard, J. Rossmeisl, Catal. Lett. 2014, 144, 380−388. (48)M. Nesselberger, S. Ashton, J. C. Meier, I. Katsounaros, K. J. J. Mayrhofer, M. Arenz, J. Am. Chem. Soc. 2011, 133, 17428-17433. (49)Y. Kawamura, R. Jinnouchi, ECS Trans., 2013, 50, 1321−1331. (50)J. Speder, L. Altmann, M. Baumer, J. J. K. Kirkensgaard, K. Mortensen, M. Arenz, RSC Adv. 2014, 4,14971−14978. (51)M. Nesselberger, M. Roefzaad, R. Faycal Hamou, P. Ulrich Biedermann, F. F. Schweinberger, S. Kunz, K. Schloegl, G. K. H. Wiberg, S. Ashton, U. Heiz, Nat.Mater., 2013, 12, 919−924. (52)E. Fabbri, S. Taylor, A. Rabis, ChemCatChem., 2014,6, 1410−1418. (53)T. Imaoka, H. Kitazawa, W. J. Chun, K. Yamamoto, Angew. Chem., 2015, 54, 9810−9815. (54)S. St. John, A. P. Angelopoulos, Electrochim. Acta, 2013, 112, 258−268. (55)D. A. Landsman, F. J. Luczak, Noble Metal-Chromium Alloy Catalysts and Electrochemical Cell, 1982. (56)V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, Nat. Mater., 2007, 6, 241−247. (57)B. Han, C. E. Carlton, J. Suntivich, Z. Xu, Y. Shao-Horn, J. Phys. Chem. C, 2015, 119, 3971−3978. (58)R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, A. U. Nilekar, M. Mavrikakis, Electrochimica Acta, 2007, 52, 2257–2263. (59)M. H. Shao, Q. W. Chang, J. P. Dodelet, R. Chenitz, Chem. Rev., 2016, 116, 3594−3657. (60)J. L. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R. R. Adzic, Angew. Chem., 2005, 44, 2132−2135. (61)B. Hammer, J. K. Nørskov, Adv. Catal. 2000, 45, 71−129. (62)S. Stolbov, S. Zuluaga, J. Phys. Chem. Lett. 2013, 4, 1537−1540. (63)Y. Xu, A. V. Ruban, M. Mavrikakis, J. Am. Chem. Soc., 2004, 126, 4717−4725. (64)W. P. Zhou, K. Sasaki, D. Su, Y. Zhu, J. X. Wang, R. R. Adzic, J. Phys. Chem. C, 2010, 114, 8950−8957. (65)M. Shao, B. H. Smith, S. Guerrero, L. Protsailo, D. Su, K. Kaneko, J. H. Odell, M. P. Humbert, K. Sasaki, J. Marzullo, Phys. Chem. Chem. Phys., 2013, 15, 15078−15090. (66)W. P. Zhou, X. Yang, M. B. Vukmirovic, B. E. Koel, J. Jiao, G. Peng, M. Mavrikakis, R. R. Adzic, J. Am. Chem. Soc., 2009, 131, 12755−12762. (67)M. H. Shao, K. Shoemaker, A. Peles, K. Kaneko, Electrocatalysts. J. Am. Chem. Soc., 2010, 132, 9253−9255. (68)S. J. Hwang, S. J. Yoo, J. Shin, Y. H. Cho, J. H. Jang, E. Cho, Y. E. Sung, S. W. Nam, T. H. Lim, S. C. Lee, Sci. Rep., 2013, 3. 1309. (69)L. Zhang, R. Iyyamperumal, D. F. Yancey, R. M. Crooks, G. Henkelman, ACS Nano, 2013, 7, 9168−9172. (70)K. Sasaki, H. Naohara, Y. Choi, Y. Cai, W. F. Chen, P. Liu, R. R. Adzic, Nat. Commun., 2012, 3, 1115. (71)I. Kissinger, Peter T. Labolatotory Techniquesin Electroanalytical Chemistry. (Secondary Edit) MARCEL DEKKER, INC, 2000. (72 W. M. Damien, G. Herzog, Analytical Chemistry, 2005, 24, 208-217. (73)J. B. Pawley, SCANNING-NEW YORK AND BADEN BADEN THEN MAHWAH, 1997, 19, 324-336. (74)電化學原理與方法,胡啟章 (75)C. M. Cobley, Y. Xia, Materials Science and Engineering, 2010, 70, 44–62. (76)S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem., 1971, 33 351-378. (77)J. K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Proc. Natl. Acad. Sci., 2011, 108, 937–943. (78)L. Tang, B. Han, K. Persson, C. Friesen, T. He, K. Sieradzki, G.Ceder, J. Am. Chem. Soc., 2010, 132, 596-600.
摘要: Bimetallic Pt-Ni with Pt on the outermost layer and an innermost layer enriched in Ni, referred to as (Pt3Ni(Pt-skin), is a promising configuration of electrocatalyst for the oxygen reduction reaction (ORR) in fuel cells. We prepare a core (Pd)/shell (Pt3Ni(Pt-skin)) catalyst (Pt3Ni(Pt-skin)/Pd/C) from Zn underpotential deposition (UPD) on a Ni UPD modified Pd/C catalyst, facilitating Pt atomic layer-by-layer growth on the Ni surface through the galvanic replacement process. The Pt3Ni(Pt-skin)/Pd/C shows the best ORR performance, with a Pt specific activity 16.7 mA cm-2 and Pt mass activity 14.2 A mgPt-1, which are 90- and 156- fold improvements over commercial Pt/C catalysts. The Pt3Ni(Pt-skin) structure effectively inhibits Ni leaching to improve the durability under the two accelerated durability test modes mimicking the catalyst lifetime and start-up/shut-down cycles.
最外層為雙金屬Pt-Ni和內層富含Ni金屬的形貌作為Pt3Ni(Pt-皮)對於燃料電池中氧氣還原反應(ORR)來說是具有前景性的電催化劑。我們製備Pd / C作為核心,Pt3Ni作為鉑金皮層的催化劑Pt3Ni(白金皮層)薄層修飾Pd/C,藉由Zn低電位沉積(UPD)於經由Ni UPD修飾後的Pd/C上,通過賈凡尼置換法處理(galvanic replacement process)使Pt原子逐層於Ni表面上成長。Pt3Ni(白金皮層)薄層修飾Pd/C具有良好的氧氣還原反應之性能,其中Pt的比活性為16.7 mA cm-2,質量活性為14.2 A mgPt-1,分別皆優於市售Pt/C 90倍以及156倍。在模擬催化劑壽命和啟動/關閉循環的兩種加速耐久性測試模式下,Pt3Ni(白金皮層)結構可有效抑制鎳浸出,從而提高耐久性。
URI: http://hdl.handle.net/11455/96335
文章公開時間: 2020-07-30
顯示於類別:化學系所

文件中的檔案:
檔案 大小格式 
nchu-107-7105051079-1.pdf2.4 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。