Please use this identifier to cite or link to this item:
標題: Photocurrent Label-free Immunosensor Based on Au/TiO2 NW:Low Limit of Detection of Alpha Fetoprotein
作者: Tzu- Jung Tien
關鍵字: 二氧化鈦奈米線
Alpha Fetoprotein
引用: 1. 人體感測器又稱 生醫感測器Taiwan mind control victim Care Association 2015 2. Yen, Y.C., et al., Plasmon-induced efficiency enhancement on dye-sensitized solar cell by a 3D TNW-AuNP layer. ACS Appl Mater Interfaces, 2015. 7(3): p. 1892-8. 3. Long, F., A. Zhu, and H. Shi, Recent advances in optical biosensors for environmental monitoring and early warning. Sensors (Basel), 2013. 13(10): p. 13928-48. 4. Li, S., et al., Nanoscale Sensors. 2013. 5. Amanda J. Haes and Richard P. Van Duyne A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles J. AM. CHEM. SOC. 2002, 124, 10596-1060 6. 微奈米生物感測系統專利地圖及分析財團法人國家實驗研究院科技政策研究與資訊中心2005-12 7. N. Papageorgiou, W. F. Maier, M. Grätzel, 'An Iodine/Triiodide Reduction Electorocatalyst For Aqueous and Organic Media?, J. Electrochem. Soc., 144 876(1997). 8. Xiaoming Fang, Tingli Ma, Guoqing Guan, Morito Akiyama, Tetsya Kida, Eiichi Abe, J. Electroanal. Chem. 257-263(2004).. 9. M. lkegami, K. Miyoshi, T. Miyasaka, K. Teshima, App. Phy. Lett. 90, 153122(2007). 10. Chen, C.C., et al., Polymerase chain reaction-free detection of hepatitis B virus DNA using a nanostructured impedance biosensor. Biosens Bioelectron, 2016. 77: p. 603-8. 11. Nanoscale Sensors Shibin Li • Jiang Wu • Zhiming M. Wang Yadong Jiang ISSN 2195-2159 DOI 10.1007/978-3-319-02772-2 Springer Cham Heidelberg New York Dordrecht London 12. Li, H., et al., Poly(3-hexylthiophene)/TiO2 nanoparticle-functionalized electrodes for visible light and low potential photoelectrochemical sensing of organophosphorus pesticide chlopyrifos. Anal Chem, 2011. 83(24): p. 9681-6. 13. Shen, Q., et al., ZnO/CdS Hierarchical Nanospheres for Photoelectrochemical Sensing of Cu2+. The Journal of Physical Chemistry C, 2011. 115(36): p. 17958-17964. 14. Wang, W., et al., Visible light induced photoelectrochemical biosensing based on oxygen-sensitive quantum dots. Anal Chim Acta, 2012. 744: p. 33-8. 15. An, Y., et al., A photoelectrochemical immunosensor based on Au-doped TiO2 nanotube arrays for the detection of alpha-synuclein. Chemistry, 2010. 16(48): p. 14439-46. 16. Hu, N., Ha, D., Wu, C., Zhou, J., Kirsanov, D., Legin, A., Wang, P.: A LAPS array with low cross-talk for non-invasive measurement of cellular metabolism. Sensor. Actuat. A 187,50–56 (2012) 17. Barisci J. N., Wallace G. G., Baughman R. H., 'Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions', Electrochimica Acta, 46, 509-517, 2000 18. Primo, A., A. Corma, and H. Garcia, Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys, 2011. 13(3): p. 886-910. 19. Lin, B., et al., Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity. Applied Catalysis B: Environmental, 2016. 198: p. 276-285. 20. Pandikumar, A., S. Murugesan, and R. Ramaraj, Functionalized silicate sol-gel-supported TiO2-Au core-shell nanomaterials and their photoelectrocatalytic activity. ACS Appl Mater Interfaces, 2010. 2(7): p. 1912-7. 21. Y.X. Zhang, G.H. Li *, Y.X. Jin, Y. Zhang, J. Zhang, L.D. ZhangHydrothermal synthesis and photoluminescence of TiO2 nanowires2002 Published by Elsevier Science B.V. PII: S0 0 09 -2 6 14 (0 2 )01 4 99 -9 22. San Hua Lim,†,‡ Jizhong Luo,‡ Ziyi Zhong,‡ Wei Ji,† and Jianyi Lin Room-Temperature Hydrogen Uptake by TiO2 Nanotubes Inorganic Chemistry, Vol. 44, No. 12, 2005 23. Brammer, K.S., C.J. Frandsen, and S. Jin, TiO2 nanotubes for bone regeneration. Trends Biotechnol, 2012. 30(6): p. 315-22. 24. Jong Hyeok Park, Sungwook Kim, and Allen J. Bard Nano Lett., Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting Vol. 6, No. 1, 2006 25. Hou, Y., et al., Electrochemical Method for Synthesis of a ZnFe2O4/TiO2 Composite Nanotube Array Modified Electrode with Enhanced Photoelectrochemical Activity. Advanced Functional Materials, 2010. 20(13): p. 2165-2174. 26. Maijenburg, A.W., et al., Electrochemical synthesis of coaxial TiO2–Ag nanowires and their application in photocatalytic water splitting. J. Mater. Chem. A, 2013. 2(8): p. 2648-2656. 27. Shi, H., Zhao, G., Cao, T., Liu, M., Guan, C., Huang, X., Zhu, Z., Yang, N., Williams,O.A.: Selective and visible-light-driven profenofos sensing with calixarene receptors on TiO2 nanotube film electrodes. Electrochem. Commun. 19, 111–114 (2012) 28. Rodriguez, B.A.G., et al., Nanomaterials for Advancing the Health Immunosensor. 2015. 29. Luo, L.-B., et al., Surface Plasmon-Enhanced Nano-photodetector for Green Light Detection. Plasmonics, 2015. 11(2): p. 619-625. 30. Pany, S., et al., Plasmon induced nano Au particle decorated over S,N-modified TiO(2) for exceptional photocatalytic hydrogen evolution under visible light. ACS Appl Mater Interfaces, 2014. 6(2): p. 839-46. 31. Jiang, Y., et al., Photoelectrochemical detection of alpha-fetoprotein based on ZnO inverse opals structure electrodes modified by Ag2S nanoparticles. Sci Rep, 2016. 6: p. 38400. 32. Kar, P. and K. Shankar, Biodiagnostics Using Oriented and Aligned Inorganic Semiconductor Nanotubes and Nanowires. Journal of Nanoscience and Nanotechnology, 2013. 13(7): p. 4473-4496. 33. Tian, J., et al., Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem Soc Rev, 2014. 43(20): p. 6920-37. 34. Pu, Y.C., et al., Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett, 2013. 13(8): p. 3817-23. 35. Zhang, X., Li, S., Jin, X., Li, X.: Aptamer based photoelectrochemical cytosensor with layerby-layer assembly of CdSe semiconductor nanoparticles as photoelectrochemically active species. Biosensor. Bioelectron. 26, 3674–3678 (2011) 36. Wang, H., et al., Au/TiO2/Au as a Plasmonic Coupling Photocatalyst. The Journal of Physical Chemistry C, 2012. 116(10): p. 6490-6494. 37. Xiong, P., et al., An Ultrasensitive Electrochemical Immunosensor for Alpha-Fetoprotein Using an Envision Complex-Antibody Copolymer as a Sensitive Label. Materials, 2012. 5(12): p. 2757-2772. 38. Guo, L., et al., Enhanced Photoelectrocatalytic Reduction of Oxygen Using Au@TiO2 Plasmonic Film. ACS Appl Mater Interfaces, 2016. 8(51): p. 34970-34977. 29. Ojani, R., J.B. Raoof, and E. Zarei, Photoelectrocatalytic oxidation of formaldehyde using a Ti/TiO2 foil electrode. Application for its novel and simple photoelectrochemical determination. Talanta, 2012. 99: p. 277-82. 40. Yan, H., et al., Dual-responsive competitive immunosensor for sensitive detection of tumor marker on g-CN/rGO conjugation. Sensors and Actuators B: Chemical, 2016. 230: p. 810-817. 41. Yang, X., J. Li, and J. Fu, A novel photoelectrochemical sensor for the detection of α-fetoprotein based on a mesoporous TiO2–CdS QD composite film. Anal. Methods, 2015. 7(4): p. 1328-1332. 42. Wang, G.L., et al., Label-free photoelectrochemical immunoassay for alpha-fetoprotein detection based on TiO(2)/CdS hybrid. Biosens Bioelectron, 2009. 25(4): p. 791-6. 43. Zhao, W.W., et al., Highly sensitive photoelectrochemical immunoassay with enhanced amplification using horseradish peroxidase induced biocatalytic precipitation on a CdS quantum dots multilayer electrode. Anal Chem, 2012. 84(2): p. 917-23. 44. Yuan, F., et al., Split photoelectrochemistry for the immunoassay of α-fetoprotein based on graphitic carbon nitride. Journal of Electroanalytical Chemistry, 2016. 783: p. 226-232. 45. Li, Y.J., M.J. Ma, and J.J. Zhu, Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of alpha-fetoprotein. Anal Chem, 2012. 84(23): p. 10492-9. 46. Han, Z., et al., A photoelectrochemical immunosensor for detection of α-fetoprotein based on Au-ZnO flower-rod heterostructures. Applied Surface Science, 2017. 402: p. 429-435. 47. Burcu Bahadir, E. and M. Kemal Sezginturk, Applications of electrochemical immunosensors for early clinical diagnostics. Talanta, 2015. 132: p. 162-74. 48. Shanmugasundaram, K., et al., Direct electrochemistry of cytochrome c with three-dimensional nanoarchitectured multicomponent composite electrode and nitrite biosensing. Sensors and Actuators B: Chemical, 2016. 228: p. 737-747. 49. Liu, X., et al., A Sensitive Electrochemical Immunosensor for α-Fetoprotein Detection with Colloidal Gold-Based Dentritical Enzyme Complex Amplification. Electroanalysis, 2010. 22(2): p. 244-250. 50. Schöning,M.J., Schmidt, C., Schubert, J., Zander,W.,Mesters, S., Kordos, P., Lüth, H., Legin,A., Seleznev, B., Vlasov, Y.G.: Thin film sensors on the basis of chalcogenide glass materials prepared by pulsed laser deposition technique. Sensor. Actuat. B 68, 254–259 (2000) 51. Yuan, S., et al., Sandwich-type electrochemiluminescence immunosensor based on Ru-silica@Au composite nanoparticles labeled anti-AFP. Talanta, 2010. 82(4): p. 1468-71. 52. Wang, Y., et al., Dual modification of TiO 2 nanorods for selective photoelectrochemical detection of organic compounds. Sensors and Actuators B: Chemical, 2017. 250: p. 307-314. 53. Yuan, Y., et al., A Reagentless Amperometric Immunosensor for Alpha-Fetoprotein Based on Gold Nanoparticles/TiO2 Colloids/Prussian Blue Modified Platinum Electrode. Electroanalysis, 2007. 19(13): p. 1402-1410. 54. Zhang, X., et al., Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy & Environmental Science, 2014. 7(4): p. 1409.
摘要: Recently,photoelectrochemical (PEC) sensing systems represent a potential detection for analyzing chemical/biological molecular. In addition, TiO2 nanostructures are one of the promising materials for PEC sensing which possessing characteristics, such as chemical stability、biocompatibility and also an n-type semiconductor. Nonetheless TiO2 absorption region is poor at visible light and thus which limit PEC sensitivity. Therefore, the composite of gold nanoparticles on TiO2 nanowires (Au/TiO2 NW) was proposed in this work. The direct attachment of gold nanoparticles to TiO2 NW offers strong surface plasmon resonance which increase the photocurrent density in visible light region. Furthermore, gold nanoparticles plays an important role for providing favorable environment for absorption of AFP.The diffreance on the impedence due to the interaction between AFP and gold nanoparticles result in the change on the photocurrent.Based on the variation in the photocurrent,the quantitative and qualitative analysis of AFP were carried out.
文章公開時間: 10000-01-01
Appears in Collections:化學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.