Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96338
DC FieldValueLanguage
dc.contributorKuan-Jiuh Linen_US
dc.contributor林寬鋸zh_TW
dc.contributor.authorTzu- Jung Tienen_US
dc.contributor.author田子容zh_TW
dc.contributor.other化學系所zh_TW
dc.date2017zh_TW
dc.date.accessioned2018-12-17T03:58:23Z-
dc.identifier.citation1. 人體感測器又稱 生醫感測器Taiwan mind control victim Care Association 2015 2. Yen, Y.C., et al., Plasmon-induced efficiency enhancement on dye-sensitized solar cell by a 3D TNW-AuNP layer. ACS Appl Mater Interfaces, 2015. 7(3): p. 1892-8. 3. Long, F., A. Zhu, and H. Shi, Recent advances in optical biosensors for environmental monitoring and early warning. Sensors (Basel), 2013. 13(10): p. 13928-48. 4. Li, S., et al., Nanoscale Sensors. 2013. 5. Amanda J. Haes and Richard P. Van Duyne A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles J. AM. CHEM. SOC. 2002, 124, 10596-1060 6. 微奈米生物感測系統專利地圖及分析財團法人國家實驗研究院科技政策研究與資訊中心2005-12 7. N. Papageorgiou, W. F. Maier, M. Grätzel, 'An Iodine/Triiodide Reduction Electorocatalyst For Aqueous and Organic Media?, J. Electrochem. Soc., 144 876(1997). 8. Xiaoming Fang, Tingli Ma, Guoqing Guan, Morito Akiyama, Tetsya Kida, Eiichi Abe, J. Electroanal. Chem. 257-263(2004).. 9. M. lkegami, K. Miyoshi, T. Miyasaka, K. Teshima, App. Phy. Lett. 90, 153122(2007). 10. Chen, C.C., et al., Polymerase chain reaction-free detection of hepatitis B virus DNA using a nanostructured impedance biosensor. Biosens Bioelectron, 2016. 77: p. 603-8. 11. Nanoscale Sensors Shibin Li • Jiang Wu • Zhiming M. Wang Yadong Jiang ISSN 2195-2159 DOI 10.1007/978-3-319-02772-2 Springer Cham Heidelberg New York Dordrecht London 12. Li, H., et al., Poly(3-hexylthiophene)/TiO2 nanoparticle-functionalized electrodes for visible light and low potential photoelectrochemical sensing of organophosphorus pesticide chlopyrifos. Anal Chem, 2011. 83(24): p. 9681-6. 13. Shen, Q., et al., ZnO/CdS Hierarchical Nanospheres for Photoelectrochemical Sensing of Cu2+. The Journal of Physical Chemistry C, 2011. 115(36): p. 17958-17964. 14. Wang, W., et al., Visible light induced photoelectrochemical biosensing based on oxygen-sensitive quantum dots. Anal Chim Acta, 2012. 744: p. 33-8. 15. An, Y., et al., A photoelectrochemical immunosensor based on Au-doped TiO2 nanotube arrays for the detection of alpha-synuclein. Chemistry, 2010. 16(48): p. 14439-46. 16. Hu, N., Ha, D., Wu, C., Zhou, J., Kirsanov, D., Legin, A., Wang, P.: A LAPS array with low cross-talk for non-invasive measurement of cellular metabolism. Sensor. Actuat. A 187,50–56 (2012) 17. Barisci J. N., Wallace G. G., Baughman R. H., 'Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions', Electrochimica Acta, 46, 509-517, 2000 18. Primo, A., A. Corma, and H. Garcia, Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys, 2011. 13(3): p. 886-910. 19. Lin, B., et al., Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity. Applied Catalysis B: Environmental, 2016. 198: p. 276-285. 20. Pandikumar, A., S. Murugesan, and R. Ramaraj, Functionalized silicate sol-gel-supported TiO2-Au core-shell nanomaterials and their photoelectrocatalytic activity. ACS Appl Mater Interfaces, 2010. 2(7): p. 1912-7. 21. Y.X. Zhang, G.H. Li *, Y.X. Jin, Y. Zhang, J. Zhang, L.D. ZhangHydrothermal synthesis and photoluminescence of TiO2 nanowires2002 Published by Elsevier Science B.V. PII: S0 0 09 -2 6 14 (0 2 )01 4 99 -9 22. San Hua Lim,†,‡ Jizhong Luo,‡ Ziyi Zhong,‡ Wei Ji,† and Jianyi Lin Room-Temperature Hydrogen Uptake by TiO2 Nanotubes Inorganic Chemistry, Vol. 44, No. 12, 2005 23. Brammer, K.S., C.J. Frandsen, and S. Jin, TiO2 nanotubes for bone regeneration. Trends Biotechnol, 2012. 30(6): p. 315-22. 24. Jong Hyeok Park, Sungwook Kim, and Allen J. Bard Nano Lett., Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting Vol. 6, No. 1, 2006 25. Hou, Y., et al., Electrochemical Method for Synthesis of a ZnFe2O4/TiO2 Composite Nanotube Array Modified Electrode with Enhanced Photoelectrochemical Activity. Advanced Functional Materials, 2010. 20(13): p. 2165-2174. 26. Maijenburg, A.W., et al., Electrochemical synthesis of coaxial TiO2–Ag nanowires and their application in photocatalytic water splitting. J. Mater. Chem. A, 2013. 2(8): p. 2648-2656. 27. Shi, H., Zhao, G., Cao, T., Liu, M., Guan, C., Huang, X., Zhu, Z., Yang, N., Williams,O.A.: Selective and visible-light-driven profenofos sensing with calixarene receptors on TiO2 nanotube film electrodes. Electrochem. Commun. 19, 111–114 (2012) 28. Rodriguez, B.A.G., et al., Nanomaterials for Advancing the Health Immunosensor. 2015. 29. Luo, L.-B., et al., Surface Plasmon-Enhanced Nano-photodetector for Green Light Detection. Plasmonics, 2015. 11(2): p. 619-625. 30. Pany, S., et al., Plasmon induced nano Au particle decorated over S,N-modified TiO(2) for exceptional photocatalytic hydrogen evolution under visible light. ACS Appl Mater Interfaces, 2014. 6(2): p. 839-46. 31. Jiang, Y., et al., Photoelectrochemical detection of alpha-fetoprotein based on ZnO inverse opals structure electrodes modified by Ag2S nanoparticles. Sci Rep, 2016. 6: p. 38400. 32. Kar, P. and K. Shankar, Biodiagnostics Using Oriented and Aligned Inorganic Semiconductor Nanotubes and Nanowires. Journal of Nanoscience and Nanotechnology, 2013. 13(7): p. 4473-4496. 33. Tian, J., et al., Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem Soc Rev, 2014. 43(20): p. 6920-37. 34. Pu, Y.C., et al., Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett, 2013. 13(8): p. 3817-23. 35. Zhang, X., Li, S., Jin, X., Li, X.: Aptamer based photoelectrochemical cytosensor with layerby-layer assembly of CdSe semiconductor nanoparticles as photoelectrochemically active species. Biosensor. Bioelectron. 26, 3674–3678 (2011) 36. Wang, H., et al., Au/TiO2/Au as a Plasmonic Coupling Photocatalyst. The Journal of Physical Chemistry C, 2012. 116(10): p. 6490-6494. 37. Xiong, P., et al., An Ultrasensitive Electrochemical Immunosensor for Alpha-Fetoprotein Using an Envision Complex-Antibody Copolymer as a Sensitive Label. Materials, 2012. 5(12): p. 2757-2772. 38. Guo, L., et al., Enhanced Photoelectrocatalytic Reduction of Oxygen Using Au@TiO2 Plasmonic Film. ACS Appl Mater Interfaces, 2016. 8(51): p. 34970-34977. 29. Ojani, R., J.B. Raoof, and E. Zarei, Photoelectrocatalytic oxidation of formaldehyde using a Ti/TiO2 foil electrode. Application for its novel and simple photoelectrochemical determination. Talanta, 2012. 99: p. 277-82. 40. Yan, H., et al., Dual-responsive competitive immunosensor for sensitive detection of tumor marker on g-CN/rGO conjugation. Sensors and Actuators B: Chemical, 2016. 230: p. 810-817. 41. Yang, X., J. Li, and J. Fu, A novel photoelectrochemical sensor for the detection of α-fetoprotein based on a mesoporous TiO2–CdS QD composite film. Anal. Methods, 2015. 7(4): p. 1328-1332. 42. Wang, G.L., et al., Label-free photoelectrochemical immunoassay for alpha-fetoprotein detection based on TiO(2)/CdS hybrid. Biosens Bioelectron, 2009. 25(4): p. 791-6. 43. Zhao, W.W., et al., Highly sensitive photoelectrochemical immunoassay with enhanced amplification using horseradish peroxidase induced biocatalytic precipitation on a CdS quantum dots multilayer electrode. Anal Chem, 2012. 84(2): p. 917-23. 44. Yuan, F., et al., Split photoelectrochemistry for the immunoassay of α-fetoprotein based on graphitic carbon nitride. Journal of Electroanalytical Chemistry, 2016. 783: p. 226-232. 45. Li, Y.J., M.J. Ma, and J.J. Zhu, Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of alpha-fetoprotein. Anal Chem, 2012. 84(23): p. 10492-9. 46. Han, Z., et al., A photoelectrochemical immunosensor for detection of α-fetoprotein based on Au-ZnO flower-rod heterostructures. Applied Surface Science, 2017. 402: p. 429-435. 47. Burcu Bahadir, E. and M. Kemal Sezginturk, Applications of electrochemical immunosensors for early clinical diagnostics. Talanta, 2015. 132: p. 162-74. 48. Shanmugasundaram, K., et al., Direct electrochemistry of cytochrome c with three-dimensional nanoarchitectured multicomponent composite electrode and nitrite biosensing. Sensors and Actuators B: Chemical, 2016. 228: p. 737-747. 49. Liu, X., et al., A Sensitive Electrochemical Immunosensor for α-Fetoprotein Detection with Colloidal Gold-Based Dentritical Enzyme Complex Amplification. Electroanalysis, 2010. 22(2): p. 244-250. 50. Schöning,M.J., Schmidt, C., Schubert, J., Zander,W.,Mesters, S., Kordos, P., Lüth, H., Legin,A., Seleznev, B., Vlasov, Y.G.: Thin film sensors on the basis of chalcogenide glass materials prepared by pulsed laser deposition technique. Sensor. Actuat. B 68, 254–259 (2000) 51. Yuan, S., et al., Sandwich-type electrochemiluminescence immunosensor based on Ru-silica@Au composite nanoparticles labeled anti-AFP. Talanta, 2010. 82(4): p. 1468-71. 52. Wang, Y., et al., Dual modification of TiO 2 nanorods for selective photoelectrochemical detection of organic compounds. Sensors and Actuators B: Chemical, 2017. 250: p. 307-314. 53. Yuan, Y., et al., A Reagentless Amperometric Immunosensor for Alpha-Fetoprotein Based on Gold Nanoparticles/TiO2 Colloids/Prussian Blue Modified Platinum Electrode. Electroanalysis, 2007. 19(13): p. 1402-1410. 54. Zhang, X., et al., Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy & Environmental Science, 2014. 7(4): p. 1409.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/96338-
dc.description.abstractRecently,photoelectrochemical (PEC) sensing systems represent a potential detection for analyzing chemical/biological molecular. In addition, TiO2 nanostructures are one of the promising materials for PEC sensing which possessing characteristics, such as chemical stability、biocompatibility and also an n-type semiconductor. Nonetheless TiO2 absorption region is poor at visible light and thus which limit PEC sensitivity. Therefore, the composite of gold nanoparticles on TiO2 nanowires (Au/TiO2 NW) was proposed in this work. The direct attachment of gold nanoparticles to TiO2 NW offers strong surface plasmon resonance which increase the photocurrent density in visible light region. Furthermore, gold nanoparticles plays an important role for providing favorable environment for absorption of AFP.The diffreance on the impedence due to the interaction between AFP and gold nanoparticles result in the change on the photocurrent.Based on the variation in the photocurrent,the quantitative and qualitative analysis of AFP were carried out.en_US
dc.description.abstract近十年來,光電流免疫感測法被發現是一個非常具有潛力的分析化學分子/生物分子的感測方式。再加上二氧化鈦奈米結構也是光電流感測中具有非常大潛力的材料,其擁有化學穩定、生物相容性也是n型半導體材料等特質。然而二氧化鈦的吸收光侷限在紫外光區因此也侷限了其偵測的靈敏度。因此本論文結合金奈米粒子與二氧化鈦奈米線希冀使其增加光吸收。金奈米粒子與二氧化鈦的直接鍵結提供了非常好強的侷域性表面電漿共振特性使其吸收可以吸收光範圍多了可見光區進而增加了光電流密度。此外,金奈米粒子擁有易吸附蛋白質的特性,因此直接的吸附AFP抗原在金奈米粒子的表面會改變電極的導電度使導電度提升,使光電流產生差異,因此,本實驗將以電流的差異對偵測AFP做定性與定量的偵測。zh_TW
dc.description.tableofcontents第一章 緒論 1 1.1 緣起 1 1.2 生物感測器 2 1.2.1 生物感測器歷史發展 3 1.2.2 生物感測器類型 5 第二章 文獻回顧與理論基礎 14 2.1半導體生物感測器簡介 14 2.2 光電流半導體偵測應用 17 2.2.1量測有電化學活性的分子 17 2.2.2 量測不可溶之物質 18 2.2.3量測反應含有酵素參與 19 2.2.4 免疫蛋白偵測器 21 2.3 甲型胎兒蛋白簡介 23 2.3.1不同分析方法偵測AFP文獻回顧 25 2.3.3 半導體光電流偵測AFP文獻比較 25 2.4 二氧化鈦簡介 30 2.5 一維二氧化鈦奈米材料製備方法 33 2.5.1 溶膠法(sol-gel method) 33 2.5.2 水熱法(Hydrothermal method) 34 2.5.3 直接氧化法(Direct Oxidation method) 36 2.5.4 電沉積 (Electrodeposition) 37 2.6 金奈米粒子表面電漿共振效應簡介 38 2.7 金奈米粒子製備方法 43 2.7.1 鹽類還原法 43 2.7.2 電化學法 45 2.7.3 光沉積法 (Photodeposition) 45 2.7.4 濺鍍法 46 2.8 研究動機 48 第三章 實驗部分 50 3.1藥品及儀器 50 3.1.1實驗藥品 50 3.1.2 儀器 51 3.2 實驗步驟 52 3.2.1 水熱法製備二氧化鈦奈米線基板 52 3.2.2 金奈米粒子修飾 53 3.2.3 修飾甲型胎兒蛋白抗體(alpha fetoprotein antibody)於金奈米粒子之上 55 3.2.4 利用修飾anti-AFP 的金奈米粒子二氧化鈦基板偵測甲型胎兒蛋白抗體(alpha fetoprotein,AFP) 56 3.2.5將玻璃基板製作成電極 57 3.3 材料特性分析 57 3.3.1 紫外線-可見光光譜儀(UV/Vis spectrometer) 57 3.3.2 三維奈米拉曼磷光顯微鏡系統 (3D Nanometer Scale Raman Photoluminesence Microspectrometer) 57 3.3.3 場發射掃描式電子顯微鏡 (FE-SEM) 58 3.3.4 高解析穿透式電子顯微鏡 (HR-TEM) 58 3.3.5 三維拉曼磷光顯微鏡 (Vibrational Spectroscopic Imaging system) 59 3.3.6 阻抗值量測 (Electrochemical Impedance Spectroscopy,EIS) 59 3.3.7 電化學量測 60 第四章 實驗結果與討論 61 4.1 TiO2-Au基板性質鑑定與偵測表現 61 4.1.1 TiO2 NW性質鑑定 61 4.1.2金奈米粒子鍛燒溫度調控 63 4.1.3 金奈米粒子金膜厚度調控 64 4.1.4 電化學性質量測 70 4.1.5 專一性 78 4.1.6 小結 80 4.2 Au/TiO2-Au基板性質鑑定與偵測表現 81 4.2.1Au/TiO2-Au SEM鑑定 81 4.2.2 電化學量測 83 4.2.3專一性 90 4.2.4小結 91 第五章 總結與未來展望 92 5.1總結 92 5.2 未來展望 93 參考文獻 94zh_TW
dc.language.isozh_TWzh_TW
dc.rights不同意授權瀏覽/列印電子全文服務zh_TW
dc.subject二氧化鈦奈米線zh_TW
dc.subject金奈米粒子zh_TW
dc.subject甲型胎兒蛋白zh_TW
dc.subjectTiO2 NWen_US
dc.subjectAu NPen_US
dc.subjectAlpha Fetoproteinen_US
dc.titlePhotocurrent Label-free Immunosensor Based on Au/TiO2 NW:Low Limit of Detection of Alpha Fetoproteinen_US
dc.title金奈米粒子/二氧化鈦奈米線基板:光電流免疫感測低濃度極限甲型胎兒蛋白zh_TW
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2020-07-31zh_TW
dc.date.openaccess10000-01-01-
Appears in Collections:化學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.