Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96339
標題: Novel Silver N-heterocyclic Carbene Complex Promoted the Palladium-Catalyzed Friedel-Crafts Alkylation Reaction
銀碳烯錯合物促進鈀催化傅里德-克拉夫茨烷基化反應
作者: Hui-Tzu Chiu
邱惠慈
關鍵字: 銀碳烯錯合物
傅里德-克拉夫茨烷基化反應
Silver N-heterocyclic Carbene Complex
Palladium-Catalyzed
Friedel-Crafts Alkylation Reaction
引用: (1) Li, S. M. Nat. Prod. Rep. 2010, 27, 57. (2) Zhang, D.; Song, H.; Qin, Y. Acc. Chem. Res. 2011, 44, 447. (3) Jones, R. S. Prog. Neurobiol. 1982, 19, 117. (4) Slominski, A.; Semak, I.; Pisarchik, A.; Sweatman, T.; Szczesniewski, A.; Wortsman, J. FEBS Lett. 2002, 511, 102. (5) Altun, A.; Ugur-Altun, B. Int. J. Clin. Pract. 2007, 61, 835. (6) Weissberg, J. B.; Son, Y. H.; Papac, R. J.; Sasaki, C.; Fischer, D. B.; Lawrence, R.; Rockwell, S.; Sartorelli, A. C.; Fischer, J. J. Int. J. Radiat. Oncol. Biol. Phys. 1989, 17, 3. (7) Shamon, S. D.; Perez, M. I. DB. 2009, CD007655. (8) Derry, C. J.; Derry, S.; Moore, R. A. DB. 2014, CD009108. (9) Plosker, G. L.; Wagstaff, A. J. Drugs 1996, 51, 433. (10) Jeannin, L.; Boisbrun, M.; Nemes, C.; Cochard, F.; Laronze, M.; Dardennes, E.; Kovács-Kulyassa, Á.; Sapi, J.; Laronze, J.-Y. C. R. Chimie 2003, 6, 517. (11) Cao, R.; Peng, W.; Wang, Z.; Xu, A. Curr. Med. Chem. 2007, 14, 479. (12) Palmieri, A.; Petrini, M.; Shaikh, R. R. Org. Biomol. Chem. 2010, 8, 1259. (13) Luzzio, F. A. Tetrahedron 2001, 57, 915. (14) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Chem. Soc. Rev. 2010, 39, 4449. (15) Sui, Y.; Liu, L.; Wang, D.; Chen, Y. J. Chin. J. Chem . 2007, 25, 977. (16) Lancianesi, S.; Palmieri, A.; Petrini, M. Chem. Rev. 2014, 114, 7108. (17) Arai, T.; Sato, T. Synlett 2013, 25, 349. (18) Berner, Otto M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 2002, 1877. (19) Habib, P. M.; Kavala, V.; Kuo, C.-W.; Raihan, M. J.; Yao, C.-F. Tetrahedron 2010, 66, 7050. (20) Fu, Z.; Shao, H. Ultrason. Sonochem. 2011, 18, 520. (21) Meshram, H. M.; Rao, N. N.; Kumar, G. S. Synth. Commun. 2010, 40, 3496. (22) An, L.-T.; Zou, J.-P.; Zhang, L.-L.; Zhang, Y. Tetrahedron Lett. 2007, 48, 4297. (23) Ramesh, C.; Kavala, V.; Kuo, C.-W.; Raju, B. R.; Yao, C.-F. Eur. J. Org. Chem. 2010, 2010, 3796. (24) Di Giacomo, B.; Bedini, A.; Spadoni, G.; Tarzia, G.; Fraschini, F.; Pannacci, M.; Lucini, V. Bioorg. Med. Chem. 2007, 15, 4643. (25) Buchi, G.; Mak, C. P. J. Org. Chem. 1977, 42, 1784. (26) Gungor, T.; Malabre, P.; Teulon, J. M.; Camborde, F.; Meignen, J.; Hertz, F.; Vironeoddos, A.; Caussade, F.; Cloarec, A. J. Med. Chem. 1994, 37, 4307. (27) Jeganathan, M.; Kanagaraj, K.; Dhakshinamoorthy, A.; Pitchumani, K. Tetrahedron Lett. 2014, 55, 2061. (28) Chen, W.-Y.; Li, X.-S. Synth. Commun. 2009, 39, 2014. (29) Kozhevnikov, I. V. Chem. Rev. 1998, 98, 171. (30) Azizi, N.; Arynasab, F.; Saidi, M. R. Org. Biomol. Chem. 2006, 4, 4275. (31) Shumaila, A. M. A.; Kusurkar, R. S. Synth. Commun. 2010, 40, 2935. (32) Kusurkar, R. S.; Alkobati, N. A. H.; Gokule, A. S.; Puranik, V. G. Tetrahedron 2008, 64, 1654. (33) Sri Hari, G.; Nagaraju, M.; Marthanda Murthy, M. Synth. Commun. 2007, 38, 100. (34) Das, B.; Chowdhury, N.; Damodar, K.; Reddy, K. R. Helv. Chim. Acta 2007, 90, 340. (35) Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem. Int. Ed. 2008, 47, 4016. (36) Mori, K.; Wakazawa, M.; Akiyama, T. Chem. Sci. 2014, 5, 1799. (37) Schwalm, C. S.; Ceschi, M. A.; Russowsky, D. J. Braz. Chem. Soc. 2011, 22, 623. (38) Meshram, H. M.; Kumar, D. A.; Reddy, B. C. Helv. Chim. Acta 2009, 92, 1002. (39) Ji, X.; Tong, H.; Yuan, Y. Synth. Commun. 2011, 41, 372. (40) Manabe, K.; Aoyama, N.; Kobayashi, S. Adv. Synth. Catal. 2001, 343, 174. (41) Xie, J.; Zhu, X.; Huang, M.; Meng, F.; Wang, M.; Wan, Y. Synth. Commun. 2010, 40, 3259. (42) Kantam, M. L.; Laha, S.; Yadav, J.; Srinivas, P. Synth. Commun. 2009, 39, 4100. (43) Liang, L.; Liu, Q.; Zhang, J.; Wang, F.; Yuan, Y. Res. Chem. Intermed. 2012, 39, 1957. (44) Alam, M. M.; Varala, R.; Adapa, S. R. Tetrahedron Lett. 2003, 44, 5115. (45) Bandini, M.; Melchiorre, P.; Melloni, A.; Umani-Ronchi, A. Synthesis 2002, 2002, 1110. (46) Harrington, P. E.; Kerr, M. A. Synlett 1996, 1996, 1047. (47) Bartoli, G.; Bosco, M.; Giuli, S.; Giuliani, A.; Lucarelli, L.; Marcantoni, E.; Sambri, L.; Torregiani, E. J. Org. Chem. 2005, 70, 1941. (48) Zhan, Z.-P.; Yang, R.-F.; Lang, K. Tetrahedron Lett. 2005, 46, 3859. (49) Miao, W.; Chan, T. H. Acc. Chem. Res. 2006, 39, 897. (50) Shen, W.; Wang, L.; Tang, J.; Qian, Z.; Tong, X. Chin. J. Chem . 2010, 28, 443. (51) Huang, G.; Sun, H.; Qiu, X.; Shen, Y.; Jiang, J.; Wang, L. J. Organomet. Chem. 2011, 696, 2949. (52) Kitanosono, T.; Miyo, M.; Kobayashi, S. Tetrahedron 2015, 71, 7739. (53) Liu, Z.; Zhang, T.; Shi, M. Organometallics 2008, 27, 2668. (54) Liu, Z.; Shi, M. Tetrahedron: Asymmetry 2009, 20, 119. (55) Drabina, P.; Brož, B.; Padělková, Z.; Sedlák, M. J. Organomet. Chem. 2011, 696, 971. (56) Kang, Y. K.; Kwon, B. K.; Mang, J. Y.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 3247. (57) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Angew. Chem. Int. Ed. 2009, 48, 5094. (58) Mieczynska, E.; Trzeciak, A. M. Molecules 2010, 15, 2166. (59) Frost, C. G.; Howarth, J.; Williams, J. M. J. Tetrahedron: Asymmetry 1992, 3, 1089. (60) Tromp, M.; Sietsma, J. R. A.; van Bokhoven, J. A.; van Strijdonck, G. P. F.; van Haaren, R. J.; van der Eerden, A. M. J.; van Leeuwen, P. W. N. M.; Koningsberger, D. C. Chem. Commun. 2003, 128. (61) Steinhoff, B. A.; Stahl, S. S. Org. Lett. 2002, 4, 4179. (62) Jensen, D. R.; Schultz, M. J.; Mueller, J. A.; Sigman, M. S. Angew. Chem. Int. Ed. 2003, 42, 3810. (63) Zhang, T.; Shi, M. Chem. Eur. J. 2008, 14, 3759. (64) Zhang, T.; Shi, M.; Zhao, M. Tetrahedron 2008, 64, 2412. (65) Wang, S.; Li, J.; Miao, T.; Wu, W.; Li, Q.; Zhuang, Y.; Zhou, Z.; Qiu, L. Org. Lett. 2012, 14, 1966. (66) Tulloch, A. A. D.; Danopoulos, A. A.; Cafferkey, S. M.; Kleinhenz, S.; Hursthouse, M. B.; Tooze, R. P. Chem. Commun. 2000, 1247. (67) Lin, Y.-R.; Chiu, C.-C.; Chiu, H.-T.; Lee, D.-S.; Lu, T.-J. Appl. Organomet. Chem. 2017, e3896. (68) Taige, M. A.; Zeller, A.; Ahrens, S.; Goutal, S.; Herdtweck, E.; Strassner, T. J. Organomet. Chem. 2007, 692, 1519. (69) Gavin, D. P.; Stephens, J. C. Arkivoc 2011, 407. (70) Wang, H. M. J.; Lin, I. J. B. Organometallics 1998, 17, 972. (71) Jiang, H.; Zhang, J.; Xie, J.; Liu, P.; Xue, M. Synth. Commun. 2016, 47, 211. (72) Han, L.; Xing, P.; Jiang, B. Org. Lett. 2014, 16, 3428. (73) Cheng, Y.; Lu, X.-Y.; Xu, H.-J.; Li, Y.-Z.; Chen, X.-T.; Xue, Z.-L. Inorg. Chim. Acta 2010, 363, 430. (74) Sakaguchi, S.; Yoo, K. S.; O'Neill, J.; Lee, J. H.; Stewart, T.; Jung, K. W. Angew. Chem. 2008, 120, 9466. (75) Xiao, X.-Q.; Jin, G.-X. J. Organomet. Chem. 2008, 693, 3363. (76) Lin, J. C.; Huang, R. T.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. Chem. Rev. 2009, 109, 3561. (77) Corberán, R.; Ramírez, J.; Poyatos, M.; Peris, E.; Fernández, E. Tetrahedron: Asymmetry 2006, 17, 1759. (78) Wang, D.; Zhang, B.; He, C.; Wu, P.; Duan, C. Chem. Commun. 2010, 46, 4728. (79) Wang, Z.; Wen, J.; Bi, Q.-W.; Xu, X.-Q.; Shen, Z.-Q.; Li, X.-X.; Chen, Z. Tetrahedron Lett. 2014, 55, 2969. (80) Liu, Y. F.; Wang, Z.; Shi, J. W.; Chen, B. L.; Zhao, Z. G.; Chen, Z. J. Org. Chem. 2015, 80, 12733. (81) Kankala, S.; Pagadala, R.; Maddila, S.; Vasam, C. S.; Jonnalagadda, S. B. RSC Adv. 2015, 5, 105446. (82) Zhou, M.; Fang, X.; Li, S.; Sun, J.; Zhang, Z.; Xie, R. Dalton Trans. 2016. (83) Lopchuk, J. M.; Hughes, R. P.; Gribble, G. W. Org. Lett. 2013, 15, 5218. (84) Jalal, S.; Sarkar, S.; Bera, K.; Maiti, S.; Jana, U. Eur. J. Org. Chem. 2013, 2013, 4823. (85) Choy, P. Y.; Lau, C. P.; Kwong, F. Y. J. Org. Chem. 2011, 76, 80. (86) Zhang, Z.-H.; Li, T.-S.; Li, J.-J. Monatsh. Chem. 2006, 138, 89. (87) Yang, X. Y.; Xing, H.; Zhang, Y.; Lai, Y. S.; Zhang, Y. H.; Jiang, Y. W.; Ma, D. W. Chin. J. Chem . 2012, 30, 875. (88) Demir, S.; Özdemir, I.; Çetinkaya, B. Appl. Organomet. Chem. 2006, 20, 254. (89) Seva, L.; Hwang, W.-S.; Sabiah, S. J. Mol. Catal. A: Chem. 2016, 418-419, 125. (90) Mane, A.; Lohar, T.; Salunkhe, R. Tetrahedron Lett. 2016, 57, 2341. (91) Wu, J.; Li, X.; Wu, F.; Wan, B. Org. Lett. 2011, 13, 4834. (92) Kusurkar, R. S.; Alkobati, N. A. H.; Gokule, A. S.; Chaudhari, P. M.; Waghchaure, P. B. Synth. Commun. 2006, 36, 1075. (93) Tang, H.-Y.; Zhang, Z.-B. Phosphorus, Sulfur, Silicon Relat. Elem. 2011, 186, 2038. (94) Liu, X.-L.; Xue, D.; Zhang, Z.-T. J. Heterocyclic Chem. 2011, 48, 489. (95) De Rosa, M.; Soriente, A. Tetrahedron 2010, 66, 2981. (96) Zhao, A.; Jiang, Q.; Jia, J.; Xu, B.; Liu, Y.; Zhang, M.; Liu, Q.; Luo, W.; Guo, C. Tetrahedron Lett. 2016, 57, 80. (97) Ganesan, S.; Ganesan, A.; Kothandapani, J. Synlett 2014, 25, 1847. (98) Xue, F.; Dong, Y.; Hu, P.; Deng, Y.; Wei, Y. RSC Adv. 2015, 5, 73684. (99) Dhakal, R. C.; Dieter, R. K. Org. Lett. 2014, 16, 1362. (100) Rostom, S. A. F.; Farghaly, A. M.; Soliman, F. S. G.; El-Semary, M. M.; Elz, S.; Lehmann, J. Arch. Pharm. 2001, 334, 241. (101) Hong, X.; Tan, Q.; Liu, B.; Xu, B. Angew.Chem. Int.Ed. 2017, 56, 3961.
摘要: Indole and its derivatives are important central building blocks for various biologically active natural products, agrochemicals, and drugs. In particular, the 3-substitued indoles have advantages in medicinal chemistry due to its recurring presence among antiviral agents. The synthesis of 3-substitued indoles has attracted considerable attention from chemists. One of the most important methods to synthesize 3-substitued indole derivatives is accomplished by the Friedel–Crafts alkylation reaction of indoles to nitroalkenes. In this study, compound 21 was synthesized from o-phenylenediamine and triethyl orthoformate, followed by coupling with 4-iodoanisole in the presence of CuI to give compound 22. The bis-benzimidazolium salt 17b was obtained from 22 linked with dibromopentane, then reacted with silver oxide to form silver carbene complex 23 (NHC–Ag). Palladium carbene complex (NHC–Pd) was formed by metal–metal exchange of Pd(OAc)2 with 23 in situ to catalyze the Friedel–Crafts alkylation. The catalytic system comprised of Pd(OAc)2/NHC–Ag shows high efficiency for the Friedel–Crafts alkylation over an array of indoles and activated or non-activated nitroolefins in the presence of low Pd-catalyst loading (2 mol%) at 30 °C. Particularly noteworthy is that our results are the first successful application for NHC–Ag complex 23 directly catalyzed the C–C bond formation of nitroolefins with indoles. Accroding to preliminary study results, it is found that the 3-substitued indoles were obtained by the the Friedel–Crafts alkylation of indoles to nitroalkenes using NHC–Ag complex 23 (0.5 mol %) as a catalyst in moderate yield. Further studies for NHC–Ag complex catalyzed the Friedel–Crafts alkylation will be explored in due course. In conclusion, we have developed an efficient bis-benzimiadzolium salt and its silver complex which are air/moisture stable and accessible with simple synthetic steps. The Friedel–Crafts alkylation reaction of indoles with nitroalkenes was successfully carried out under mild conditions by using the catalytic system generated from NHC–Ag complex 23 and Pd(OAc)2 in situ, which improved the disadvantages of the high-loading of catalyst, the high reaction temperature and the long reaction time.
吲哚衍生物在許多藥物及天然物中是很重要的結構,具有顯著的生物與藥理活性,因此吲哚衍生物的合成方法有許多化學家投入研究。其中以利用傅里德-克拉夫茨烷基化反應催化吲哚與硝基烯烴進行加成反應,合成具有不同官能基的吲哚衍生物為最重要的方式之一。 本研究利用鄰苯二胺與原甲酸三乙酯合成化合物 21,接著在碘化亞銅 (CuI) 的催化下,與 4-碘苯甲醚進行偶合反應得到化合物 22,再與1,5-二溴戊烷進行取代反應,成功地合成出以苯並咪唑為主架構的雙含氮雜環配體 17b。再進一步與氧化銀先形成銀碳烯錯合物 23 (NHC–Ag)。在反應中與醋酸鈀進行金屬-金屬交換,原位生成鈀金屬碳烯錯合物 (NHC–Pd)。利用此種催化劑可在低添加量 (2 mol%) 與 30 °C 下,催化多樣性吲哚與硝基烯烴進行傅里德-克拉夫茨烷基化反應,皆有良好之產率。 我們是第一個發現銀碳烯錯合物可直接催化硝基烯烴與吲哚之烷基化反應成功的例子,藉由初步地進行反應條件的探討,發現可以在低催化劑添加量 (0.5 mol%) 下獲得中等產率之產物,後續我們也將再深入地探討這個有趣的發現。 本研究發展出操作步驟容易、簡短,所需的反應物價格便宜的新型銀碳烯錯合物。其錯合物具有在空氣與水氣中極為穩定的特性。利用錯合物 23 與鈀金屬所形成之催化劑,成功地在溫和條件下進行傅里德-克拉夫茨烷基化反應,有效改善以往催化劑添加量較大、反應溫度高且反應時間長等缺點。
URI: http://hdl.handle.net/11455/96339
文章公開時間: 2018-08-14
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.