請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/96343
標題: Electrochemical instruments detect the change of platinum nanoparticles soaked in solution
電化學儀器檢測浸泡在溶液中的白金奈米顆粒的變化
作者: Chih-Yu Chen
陳致宇
關鍵字: 白金奈米顆粒
電化學活性表面積
Platinum nanoparticles
Electrochemical Active Surface Area
引用: (1) Antoine, O.; Bultel, Y.; Durand, R.Oxygen Reduction Reaction Kinetics and Mechanism on Platinum Nanoparticles inside Nafion®. J. Electroanal. Chem. 2001, 499 (1), 85–94. (2) Tripković, V.; Skúlason, E.; Siahrostami, S.; Nørskov, J. K.; Rossmeisl, J.The Oxygen Reduction Reaction Mechanism on Pt(111) from Density Functional Theory Calculations. Electrochim. Acta 2010, 55 (27), 7975–7981. (3) Wee, J.-H.; Lee, K.-Y.; Kim, S. H.Fabrication Methods for Low-Pt-Loading Electrocatalysts in Proton Exchange Membrane Fuel Cell Systems. J. Power Sources 2007, 165 (2), 667–677. (4) Park, S.; Shao, Y.; Kou, R.; Viswanathan, V.V.; Towne, S. A.; Rieke, P. C.; Liu, J.; Lin, Y.; Wang, Y.Polarization Losses under Accelerated Stress Test Using Multiwalled Carbon Nanotube Supported Pt Catalyst in PEM Fuel Cells. J. Electrochem. Soc. 2011, 158 (3), B297. (5) Peighambardoust, S. J.; Rowshanzamir, S.; Amjadi, M.Review of the Proton Exchange Membranes for Fuel Cell Applications. In International Journal of Hydrogen Energy; 2010; Vol. 35, pp 9349–9384. (6) Chen, J.; Matsuura, T.; Hori, M.Novel Gas Diffusion Layer with Water Management Function for PEMFC. J. Power Sources 2004, 131 (1–2), 155–161. (7) Li, H.; Tang, Y.; Wang, Z.; Shi, Z.; Wu, S.; Song, D.; al, et.A Review of Water Flooding Issues in the Proton Exchange Membrane Fuel Cell. J. Power Sources 2008, 178(1), 103–117. (8) Cao, T. F.; Lin, H.; Chen, L.; He, Y. L.; Tao, W. Q.Numerical Investigation of the Coupled Water and Thermal Management in PEM Fuel Cell. Appl. Energy 2013, 112, 1115–1125. (9) N, Yousfi-Steiner; P, Moçotéguy; D, Candusso; D, Hissel; A, Hernandez; A, A.A Review on PEM Voltage Degradation Associated with Water Management: Impacts, Influent Factors and Characterization. Journal of Power Sources. 2008, pp 260–274. (10) Schalenbach, M.; Hoefner, T.; Paciok, P.; Carmo, M.; Lueke, W.; Stolten, D.Gas Permeation through Nafion. Part 1: Measurements. J. Phys. Chem. C 2015, 119 (45), 25145–25155. (11) Schalenbach, M.; Hoeh, M. A.; Gostick, J. T.; Lueke, W.; Stolten, D.Gas Permeation through Nafion. Part 2: Resistor Network Model. J. Phys. Chem. C 2015, 119 (45), 25156–25169. (12) Park, J.; Oh, H.; Ha, T.; Lee, Y.Il; Min, K.A Review of the Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells: Durability and Degradation. Applied Energy. 2015, pp 866–880. (13) Litster, S.; McLean, G.PEM Fuel Cell Electrodes. Journal of Power Sources. 2004, pp 61–76. (14) Jaouen, F.; Proietti, E.; Lefèvre, M.; Chenitz, R.; Dodelet, J.-P.; Wu, G.; Chung, H. T.; Johnston, C. M.; Zelenay, P.Recent Advances in Non-Precious Metal Catalysis for Oxygen-Reduction Reaction in Polymer Electrolyte Fuel Cells. Energy Environ. Sci. 2011, 4 (1), 114. (15) Wang, Y. J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H.Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity. Chemical Reviews. 2015, pp 3433–3467. (16) Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J.Nanostructured Pt-Alloy Electrocatalysts for PEM Fuel Cell Oxygen Reduction Reaction. Chem. Soc. Rev. 2010, 39 (6), 2184–2202. (17) Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K.Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angew. Chemie - Int. Ed. 2006, 45 (18), 2897–2901. (18) Prabhudev, S.; Bugnet, M.; Bock, C.; Botton, G. A.Strained Lattice with Persistent Atomic Order in Pt3Fe 2 Intermetallic Core-Shell Nanocatalysts. ACS Nano 2013, 7 (7), 6103–6110. (19) Peng, H.; Liu, F.; Liu, X.; Liao, S.; You, C.; Tian, X.; Nan, H.; Luo, F.; Song, H.; Fu, Z.; Huang, P.Effect of Transition Metals on the Structure and Performance of the Doped Carbon Catalysts Derived from Polyaniline and Melamine for ORR Application. ACS Catal. 2014, 4 (10), 3797–3805. (20) Xu, Y.; Ruban, A.V.; Mavrikakis, M.Adsorption and Dissociation of O2 on Pt-Co and Pt-Fe Alloys. J. Am. Chem. Soc. 2004, 126 (14), 4717–4725. (21) Kadirgan, F.; Kannan, A. M.; Atilan, T.; Beyhan, S.; Ozenler, S. S.; Suzer, S.; Yörür, A.Carbon Supported Nano-Sized Pt-Pd and Pt-Co Electrocatalysts for Proton Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy 2009, 34 (23), 9450–9460. (22) Huang, Q.; Yang, H.; Tang, Y.; Lu, T.; Akins, D. L.Carbon-Supported Pt-Co Alloy Nanoparticles for Oxygen Reduction Reaction. Electrochem. commun. 2006, 8 (8), 1220–1224. (23) Xia, T.; Liu, J.; Wang, S.; Wang, C.; Sun, Y.; Gu, L.; Wang, R.Enhanced Catalytic Activities of NiPt Truncated Octahedral Nanoparticles toward Ethylene Glycol Oxidation and Oxygen Reduction in Alkaline Electrolyte. ACS Appl. Mater. Interfaces 2016, 8 (17), 10841–10849. (24) Baldizzone, C.; Gan, L.; Hodnik, N.; Keeley, G. P.; Kostka, A.; Heggen, M.; Strasser, P.; Mayrhofer, K. J. J.Stability of Dealloyed Porous Pt/Ni Nanoparticles. ACS Catal. 2015, 5 (9), 5000–5007. (25) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Markovic, N. M.Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science (80-. ). 2007, 315 (5811), 493–497. (26) Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y. M.; Duan, X.; Mueller, T.; Huang, Y.High-Performance Transition Metal – Doped Pt3Ni Octahedra for Oxygen Reduction Reaction. Science (80-. ). 2015, 348 (2009), 1230–1234. (27) Wang, C.; Markovic, N. M.; Stamenkovic, V. R.Advanced Platinum Alloy Electrocatalysts for the Oxygen Reduction Reaction. ACS Catalysis. 2012, pp 891–898. (28) Zhang, C.; Hwang, S. Y.; Trout, A.; Peng, Z.Solid-State Chemistry-Enabled Scalable Production of Octahedral Pt-Ni Alloy Electrocatalyst for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2014, 136 (22), 7805–7808. (29) Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M.Solvothermal Synthesis of Platinum Alloy Nanoparticles for Oxygen Reduction Electrocatalysis. J. Am. Chem. Soc. 2012, 134 (20), 8535–8542. (30) Zhang, Y.; Han, T.; Fang, J.; Xu, P.; Li, X.; Xu, J.; Liu, C.-C.Integrated Pt2Ni Alloy@Pt Core-Shell Nanoarchitectures with High Electrocatalytic Activity for Oxygen Reduction Reaction. J. Mater. Chem. A 2014, 2 (29), 11400–11407. (31) Bondarenko, A. S.; Stephens, I. E. L.; Bech, L.; Chorkendorff, I.Probing Adsorption Phenomena on a Single Crystal Pt-Alloy Surface under Oxygen Reduction Reaction Conditions. In Electrochimica Acta; 2012; Vol. 82, pp 517–523. (32) Huang, S.-Y.; Ganesan, P.; Popov, B. N.Electrocatalytic Activity and Stability of Titania-Supported Platinum−Palladium Electrocatalysts for Polymer Electrolyte Membrane Fuel Cell. ACS Catal. 2012, 2, 825–831. (33) Zhang, L.; Zhu, S.; Chang, Q.; Su, D.; Yue, J.; Du, Z.; Shao, M.Palladium-Platinum Core-Shell Electrocatalysts for Oxygen Reduction Reaction Prepared with the Assistance of Citric Acid. ACS Catal. 2016, 6 (6), 3428–3432. (34) Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y. M.; Liu, P.; Vukmirovic, M. B.; Wang, J. X.; Adzic, R. R.Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes. Angew. Chemie - Int. Ed. 2010, 49 (46), 8602–8607. (35) Tsai, H. C.; Hsieh, Y. C.; Yu, T. H.; Lee, Y. J.; Wu, Y. H.; Merinov, B.V.; Wu, P. W.; Chen, S. Y.; Adzic, R. R.; Goddard, W. A.DFT Study of Oxygen Reduction Reaction on Os/Pt Core-Shell Catalysts Validated by Electrochemical Experiment. ACS Catal. 2015, 5 (3), 1568–1580. (36) Yoo, S. J.; Sung, Y. E.Nanosized Pt-La Alloy Electrocatalysts with High Activity and Stability for the Oxygen Reduction Reaction. Surf. Sci. 2015, 631, 272–277. (37) Tan, X.; Prabhudev, S.; Kohandehghan, A.; Karpuzov, D.; Botton, G. A.; Mitlin, D.Pt-Au-Co Alloy Electrocatalysts Demonstrating Enhanced Activity and Durability toward the Oxygen Reduction Reaction. ACS Catal. 2015, 5 (3), 1513–1524. (38) Zhang, L.; Iyyamperumal, R.; Yancey, D. F.; Crooks, R. M.; Henkelman, G.Design of Pt-Shell Nanoparticles with Alloy Cores for the Oxygen Reduction Reaction. ACS Nano 2013, 7 (10), 9168–9172. (39) Liu, H.; Koenigsmann, C.; Adzic, R. R.; Wong, S. S.Probing Ultrathin One-Dimensional Pd-Ni Nanostructures as Oxygen Reduction Reaction Catalysts. ACS Catal. 2014, 4 (8), 2544–2555. (40) Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M.Energy and Fuels from Electrochemical Interfaces. Nat Mater 2017, 16 (1), 57–69. (41) Chen, J.; Lim, B.; Lee, E. P.; Xia, Y.Shape-Controlled Synthesis of Platinum Nanocrystals for Catalytic and Electrocatalytic Applications. Nano Today. 2009, pp 81–95. (42) Guo, S.; Zhang, S.; Sun, S.Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition. 2013, pp 8526–8544. (43) Guo, S.; Wang, E.Noble Metal Nanomaterials: Controllable Synthesis and Application in Fuel Cells and Analytical Sensors. Nano Today. 2011, pp 240–264. (44) Tang, H.; Qi, Z.; Ramani, M.; Elter, J. F.PEM Fuel Cell Cathode Carbon Corrosion Due to the Formation of Air/Fuel Boundary at the Anode. J. Power Sources 2006, 158 (2 SPEC. ISS.), 1306–1312. (45) Zhang, Y.; Chen, S.; Wang, Y.; Ding, W.; Wu, R.; Li, L.; Qi, X.; Wei, Z.Study of the Degradation Mechanisms of Carbon-Supported Platinum Fuel Cells Catalyst via Different Accelerated Stress Test. J. Power Sources 2015, 273, 62–69. (46) Stevens, D. A.; Dahn, J. R.Thermal Degradation of the Support in Carbon-Supported Platinum Electrocatalysts for PEM Fuel Cells. Carbon N. Y. 2005, 43 (1), 179–188. (47) Speder, J.; Zana, A.; Spanos, I.; Kirkensgaard, J. J. K.; Mortensen, K.; Hanzlik, M.; Arenz, M.Comparative Degradation Study of Carbon Supported Proton Exchange Membrane Fuel Cell Electrocatalysts - The Influence of the Platinum to Carbon Ratio on the Degradation Rate. J. Power Sources 2014, 261, 14–22. (48) Ferreira, P. J.; laO', G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A.Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells - A Mechanistic Investigation. J. Electrochem. Soc. 2005, 152 (11), A2256–A2271. (49) Yamazaki, O.; Shintaku, H.; Oomori, Y.; Tabata, T.Establishment of Accelerated Degradation Method of PEFC Stacks (NEDO Project: Fundamental Research of Degradation of PEFC Stacks). ECS Trans. 2008, 16 (2 PART 2), 1967–1975. (50) Wan, C. H.; Zhuang, Q. H.; Lin, C. H.; Lin, M. T.; Shih, C.Novel Composite Anode with CO 'Filter' Layers for PEFC. J. Power Sources 2006, 162 (1), 41–50. (51) Ding, K.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C.Identification of Active Sites in CO Oxidation and Water-Gas Shift over Supported Pt Catalysts. Science (80-. ). 2015, 350 (6257), 189–192. (52) Acres, G. J. K.; Frost, J. C.; Hards, G. A.; Potter, R. J.; Ralph, T. R.; Thompsett, D.; Burstein, G. T.; Hutchings, G. J.Electrocatalysts for Fuel Cells. Catal. Today 1997, 38 (4), 393–400. (53) Franco, A. A.; Guinard, M.; Barthe, B.; Lemaire, O.Impact of Carbon Monoxide on PEFC Catalyst Carbon Support Degradation under Current-Cycled Operating Conditions. Electrochim. Acta 2009, 54 (22), 5267–5279. (54) Laporta, M.; Pegoraro, M.; Zanderighi, L.Perfluorosulfonated Membrane (Nafion): FT-IR Study of the State of Water with Increasing Humidity. Phys. Chem. Chem. Phys. 1999, 1 (19), 4619–4628. (55) Rikukawa, M.; Sanui, K.Proton-Conducting Polymer Electrolyte Membranes Based on Hydrocarbon Polymers. Prog. Polym. Sci. 2000, 25 (10), 1463–1502. (56) Ikeshoji, T.; Otani, M.; Siahrostami, S.; Nørskov, J. K.; Rossmeisl, J.; Okamoto, Y.; Qian, Y.; Yagi, I.; Nørskov, J. K.; Mavrikakis, M.; Chi, M.; More, K. L.; Li, Y.; Markovic, N. M.; Somorjai, G. A.; Yang, P.; Stamenkovic, V. R.Toward Full Simulation of the Electrochemical Oxygen Reduction Reaction on Pt Using First-Principles and Kinetic Calculations. Phys. Chem. Chem. Phys. 2017, 19 (6), 4447–4453. (57) Hu, C.; Dai, L.Carbon-Based Metal-Free Catalysts for Electrocatalysis beyond the ORR. Angewandte Chemie - International Edition. 2016, pp 11736–11758. (58) Shao, M.; Chang, Q.; Dodelet, J.-P.; Chenitz, R.Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116 (6), 3594–3657. (59) Sungeun Yang, Young Joo Tak, Jiwhan Kim, Aloysius Soon, and H. L.Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction. ACS Catal. 2017, 7 (2), 1301–1307. (60) Sethuraman, V. A.; Weidner, J. W.; Haug, A. T.; Motupally, S.; Protsailo, L.V.Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode. J. Electrochem. Soc. 2008, 155 (1), B50. (61) Choi, C. H.; Kwon, H. C.; Yook, S.; Shin, H.; Kim, H.; Choi, M.Hydrogen Peroxide Synthesis via Enhanced Two-Electron Oxygen Reduction Pathway on Carbon-Coated Pt Surface. J. Phys. Chem. C 2014, 118 (51), 30063–30070. (62) Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L.Trends in the Electrochemical Synthesis of H2O2: Enhancing Activity and Selectivity by Electrocatalytic Site Engineering. Nano Lett. 2014, 14 (3), 1603–1608. (63) Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z.Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catal. 2015, 5 (8), 4643–4667. (64) Lide, D. R.CRC Handbook of Chemistry and Physics, 90th Edition (CD-ROM Version 2010); 2009; Vol. 131. (65) I. Roche; E. Chaînet; M. Chatenet; J. Vondrák.Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism. J. Phys. Chem. C 2007, 111 (3), 1434–1443. (66) Zhang, J.PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications; 2008. (67) Garsany, Y.; Baturina, O. A.; Swider-Lyons, K. E.; Kocha, S. S.Experimental Methods for Quantifying the Activity of Platinum Electrocatalysts for the Oxygen Reduction Reaction. In Analytical Chemistry; 2010; Vol. 82, pp 6321–6328. (68) Neyerlin, K. C.; Gu, W.; Jorne, J.; Clark, A.; Gasteiger, H. A.Cathode Catalyst Utilization for the ORR in a PEMFC. J. Electrochem. Soc. 2007, 154 (2), B279. (69) Kissinger, P. T.; Heineman, W. R.Laboratory Techniques in Electroanalytical Chemistry; 1996; Vol. 15. (70) Bard, A. J.; Faulkner, L. R.Electrochemical Methods: Fundamentals and Applications, 2nd Ed.; 2001. (71) Huang, J. F.; Yang, H. W.Electrochemical Quantifying, Counting, and Sizing Supported Pt Nanoparticles in Real Time. Anal. Chem. 2016, 88 (12), 6403–6409. (72) Zhang, S.; Yuan, X.; Wang, H.; Mérida, W.; Zhu, H.; Shen, J.; Wu, S.; Zhang, J.A Review of Accelerated Stress Tests of MEA Durability in PEM Fuel Cells. International Journal of Hydrogen Energy. 2009, pp 388–404. (73) Wu, J.; Yuan, X. Z.; Martin, J. J.; Wang, H.; Zhang, J.; Shen, J.; Wu, S.; Merida, W.A Review of PEM Fuel Cell Durability: Degradation Mechanisms and Mitigation Strategies. Journal of Power Sources. 2008, pp 104–119. (74) Miller, M.; Bazylak, A.A Review of Polymer Electrolyte Membrane Fuel Cell Stack Testing. J. Power Sources 2011, 196 (2), 601–613. (75) Abbou, S.; Dillet, J.; Spernjak, D.; Mukundan, R.; Borup, R. L.; Maranzana, G.; Lottin, O.High Potential Excursions during PEM Fuel Cell Operation with Dead-Ended Anode. J. Electrochem. Soc. 2015, 162 (10), F1212–F1220. (76) Khalakhan, I.; Vorokhta, M.; Kúš, P.; Dopita, M.; Václavů, M.; Fiala, R.; Tsud, N.; Skála, T.; Matolín, V.In Situ Probing of Magnetron Sputtered Pt-Ni Alloy Fuel Cell Catalysts during Accelerated Durability Test Using EC-AFM. Electrochim. Acta 2017, 245, 760–769. (77) Kim, T.-J.; Kwon, G.; Kim, Y.-T.Anomalously Increased Oxygen Reduction Reaction Activity with Accelerated Durability Test Cycles for Platinum on Thiolated Carbon Nanotubes. Chem. Commun. (Camb). 2014, 50 (5), 596–598. (78) Ishiguro, N.; Kityakarn, S.; Sekizawa, O.; Uruga, T.; Matsui, H.; Taguchi, M.; Nagasawa, K.; Yokoyama, T.; Tada, M.Kinetics and Mechanism of Redox Processes of Pt/C and Pt3Co/C Cathode Electrocatalysts in a Polymer Electrolyte Fuel Cell during an Accelerated Durability Test. J. Phys. Chem. C 2016, 120 (35), 19642–19651. (79) Voorhees, P. W.The Theory of Ostwald Ripening. J. Stat. Phys. 1985, 38 (1–2), 231–252. (80) Watanabe, M.; Tsurumi, K.; Mizukami, T.; Nakamura, T.; Stonehart, P.Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric-Acid Fuel-Cells. J. Electrochem. Soc. 1994, 141 (10), 2659–2668. (81) Ratke, L.; Voorhees, P. W. C. N.-B. ; S. ; U. C. L. (University C. L.Growth and Coarsening : Ostwald Ripening in Materials Processing; 2002. (82) Ishimoto, T.; Koyama, M.A Review of Molecular-Level Mechanism of Membrane Degradation in the Polymer Electrolyte Fuel Cell. Membranes. 2012, pp 395–414. (83) Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C.A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research. Applied Energy. 2011, pp 981–1007. (84) Darling, R. M.; Meyers, J. P.Kinetic Model of Platinum Dissolution in PEMFCs. J. Electrochem. Soc. 2003, 150 (11), A1523. (85) Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y.Toward the Rational Design of Non-Precious Transition Metal Oxides for Oxygen Electrocatalysis. Energy Environ. Sci. 2015, 8 (5), 1404–1427. (86) Tang, L.; Han, B.; Persson, K.; Friesen, C.; He, T.; Sieradzki, K.; Ceder, G.Electrochemical Stability of Nanometer-Scale Pt Particles in Acidic Environments. J. Am. Chem. Soc. 2010, 132 (2), 596–600.
摘要: In this paper, electrochemical instruments were used to quickly and easily detect the phenomenon of platinum nanoparticles after platinum nanoparticles were soaked in platinum solution. Electrochemical method was used to detect the electrochemical active surface area of platinum nanoparticles, and platinum was stripped in acidic solution by anodic cyclic voltammetry to calculate the platinum weight, average diameter, and the number of platinum nanoparticles on the area. Finally, the accelerated durability test was performed to examine the decay of the electrochemical active surface area and the impact of the lifetime of the platinum nanoparticles soaked in the platinum solution. When it is soaked in a high concentration of platinum solution, the electrochemical active surface area of the platinum nanoparticles decreases, the size of the particles grows, and the number of the area particles decreases. The electrochemical detection method helps to understand the coalescence and Ostwald ripening of platinum nanoparticles in solution. After the accelerated durability test, it was found that the electrochemical active surface area of the platinum nanoparticles soaked in the high concentration of platinum solution was less decayed than that of the non-soaked ones, indicating an increase in catalyst life.
本論文使用電化學儀器來快速且簡便地檢測白金奈米顆粒浸泡於白金溶液後,觀察白金奈米顆粒的現象變化。利用電化學方法檢測白金奈米顆粒的電化學活性表面積,並利用陽極循環伏安法在酸性溶液下剝除白金,來計算白金奈米顆粒的白金重量、平均直徑和面積顆粒數目。最後進行加速耐久性測試,來檢測浸泡於白金溶液的白金奈米顆粒,其電化學活性表面積的衰退及壽命影響。當其浸泡於高濃度的白金溶液後,顯著地造成了白金奈米顆粒的電化學活性表面積下降、粒徑大小的成長和面積顆粒數目下降,藉由電化學檢測方法有助於理解白金奈米顆粒在溶液中發生得聚集及奧斯瓦爾德熟化的現象。經加速耐久性測試後發現,浸泡在高濃度的白金溶液中,其白金奈米顆粒的電化學活性表面積相較於未浸泡的衰退程度更少,顯示了觸媒壽命的延長。
URI: http://hdl.handle.net/11455/96343
文章公開時間: 2021-08-13
顯示於類別:化學系所

文件中的檔案:
檔案 大小格式 
nchu-107-7105051115-1.pdf2.33 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。