請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/96345
標題: Non-targeted analysis for distinguishing of various edible animal oils by using HS-SPME-GC-MS and LLE combined with LC-MS/MS
作者: Pei-Yi Lyu
關鍵字: 動物油
animal oil
引用: 1. 衛生福利部, 2004年至2013年的素食產品摻葷率趨勢圖. 2013. 2. Arthur, C. L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry 1990, 62 (19), 2145-2148. 3. Mester, Z.; Sturgeon, R.; Pawliszyn, J., Solid phase microextraction as a tool for trace element speciation. Spectrochimica Acta Part B: Atomic Spectroscopy 2001, 56 (3), 233-260. 4. György Vas; Vékey, K., Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. Journal of Mass Spectrometry 2004, 39 (3), 233–254. 5. Wercinski, S. A., Solid Phase Microextraction: A PRACTICAL GUIDE. CRC Press 1999. 6. Kataoka, H.; Lord, H. L.; Pawliszyn, J., Applications of solid-phase microextraction in food analysis. Journal of Chromatography A 2000, 880 (1), 35-62. 7. Lord, H.; Pawliszyn, J., Evolution of solid-phase microextraction technology. Journal of Chromatography A 2000, 885 (1), 153-193. 8. Karasek, F. W.; Clement, R. E., Basic Gas Chromatography-Mass Spectrometry : Principles and Techniques. Elsevier 2012. 9. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of Instrumental Analysis. Thomson Brooks/Cole 2007. 10. Fernández-González, V.; Concha-Graña, E.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D., Solid-phase microextraction–gas chromatographic–tandem mass spectrometric analysis of polycyclic aromatic hydrocarbons. Journal of Chromatography A 2007, 1176 (1), 48-56. 11. Hoffmann, E. d.; Stroobant, V., Mass Spectrometry:Principles and Applications. Wiley 2013, p16. 12. Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R., Fundamentals of Analytical Chemistry. Cengage Learning 2013. 13. Norberg, J.; Thordarson, E.; Mathiasson, L.; Jönsson, J. A., Microporous Membrane Liquid-Liquid Extraction Coupled On-Line With Normal-Phase Liquid Chromatography for the Determination of Cationic Surfactants in River and Waste Water. Journal of Chromatogr A 2000, 869 (1), 523-529. 14. Kontsas, H.; Rosenberg, C.; Pfäffli, P.; Jäppinen, P., Gas chromatographic-mass spectrometric determination of chlorophenols in the urine of sawmill workers with past use of chlorophenol-containing anti-stain agents. Analyst 1995, 120 (6), 1745-1749. 15. Silva, M.; Gallego, M.; Valcárcel, M., Sequential atomic absorption spectrometric determination of nitrate and nitrite in meats by liquid-liquid extraction in a flow-injection system. Analytica Chimica Acta 1986, 179, 341-349. 16. Van Deemter, J. J.; Zuiderweg, F. J.; Klinkenberg, A., Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chemical Engineering Science 1995, 50 (24), 3869-3882. 17. Yamashita, M.; Fenn, J. B., Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry 1984, 88 (20), 4451-4459. 18. Hoffmann, E. d.; Stroobant, V., Mass Spectrometry:Principles and Applications. Wiley 2013, p52. 19. Dass, C., Fundamentals of Contemporary Mass Spectrometry, 1st Edition. John Wiley & Sons 2007, Hoboken, NJ, U.S.A. 20. Thermo Fisher Scientific,H-ESI Probe User Guide. 2009. 21. Thermo Fisher Scientific Exactive PlusTM Operating Manual. 2013, p3-20. 22. Thermo Fisher Scientific Exactive PlusTM Operating Manual. 2013, p3-17. 23. Scholz, M. Approaches to analyse and interpret biological profile data. Universitat Potsdam, 2006. 24. Katajamaa, M.; Miettinen, J.; Orešič, M., MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 2006, 22 (5), 634-636. 25. Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M., MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 2010, 11 (1), 1. 26. Xia, J.; Mandal, R.; Sinelnikov, I. V.; Broadhurst, D.; Wishart, D. S., MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 2012, 40 (W1), W127-W133. 27. Linstrom, P. J., NIST Chemistry WebBook;NIST Standard Reference Database Number No.69. 2001. 28. Beltrán, A.; Ramos, M.; Grané, N.; Martín, M. L.; Garrigós, M. C., Monitoring the oxidation of almond oils by HS-SPME–GC–MS and ATR-FTIR: Application of volatile compounds determination to cultivar authenticity. Food Chemistry 2011, 126 (2), 603-609. 29. Yang, L.; Jin, F.; Zhang, P.; Zhang, Y.; Wang, J.; Shao, H.; Jin, M.; Wang, S.; Zheng, L.; Wang, J., Simultaneous Determination of Perfluorinated Compounds in Edible Oil by Gel-Permeation Chromatography Combined with Dispersive Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry 2015, 63 (38), 8364-8371. 30. Cecchi, T.; Alfei, B., Volatile profiles of Italian monovarietal extra virgin olive oils via HS-SPME–GC–MS: Newly identified compounds, flavors molecular markers, and terpenic profile. Food Chemistry 2013, 141 (3), 2025-2035.
摘要: This study developed non-targeted analysis through headspace solid-phase mircroextraction (HS-SPME) combined with gas chromatography mass spectrometry (GC-MS) and liquid-liquid extraction (LLE) combined with liquid chromatography tandem mass spectrometry (LC-MS/MS) for tracing the characterization compounds to distinguish various edible animal oils.The animal oils studied are including beef oil, butter, chicken oil, duck oil, fish oil, goose oil, lard, and mutton oil. Headspace solid-phase microextraction technique was chosen as a sample pretreatment in GC analysis and the optimal extraction conditions were obtained that: 0.5g oil sample was incubated at 50℃ then extracted by using 50/30 µm DVB/CAR/PDMS fiber for 30 min. The extracted analytes were analyzed by using GC-MS with electron ionization (EI) mode whle iquid-liquid extraction technique was chosen in LC analysis and the optimal extraction conditions were got that: 0.5g oil sample was extracted with ACN and the supernatants dried then reconstituted with 300 µL methanol. The obtained MS data were analyzed with principle components analysis (PCA) method. The distinctly difference between the animal oils were found by using PCA with PC1+PC2>50%. Loading plot was used to highlight the potential biomarkers for distinguishing eight animal oils. The results showed that 22 volatile compounds were potential biomarkers in animal oil with GC analysis and 23 nonvolatile compounds were potential biomarkers in animal oil with LC analysis. The obtained potential markers found in this study could be used successfully to distinguish and classify the different species of various edible animal oils.
本實驗係開發一非目標性之分析方法鑑定不同種類的動物油。利用頂空固相微萃取法結合氣相層析質譜術和液相-液相萃取法結合液相層析串聯質譜術,分別針對揮發、半揮發以及非揮發性化合物進行萃取偵測。 本實驗針對八種動物油:牛油、奶油、雞油、鴨油、魚油、鵝油、豬油及羊油進行分析鑑定。偵測動物油中揮發及半揮發性化合物時,使用頂空固相微萃取法進行分析,其最佳化之萃取條件如下:取0.5克動物油樣品,使用50/30 µm DVB/CAR/PDMS萃取纖維,利用水浴控制樣品溫度在50℃,萃取時間為30分鐘,脫附時間為3分鐘;偵測動物油中非揮發化合物時,液相-液相萃取法之最佳化萃取條件為0.5g動物油中以1mL乙腈萃取後,劇烈搖晃1分鐘後離心10分鐘,取300 µL上清液用氮氣吹乾後加入300 µL甲醇回溶即完成萃取,再以10 µL樣品導入液相層析質譜儀中進行分析。 質譜分析所得數據利用主成分分析和資料庫搜尋找出之可能性指標性成分,HS-SPME-GC-MS實驗中,找出22個可能的指標成分,分別為牛油之層析圖中找出的Aminobutyric acid、Benzonitrile, m-phenethyl-和2,4,7,9-Tetramethyl-5-decyn-4,7-diol;奶油之層析圖中找出的Spiro[2.4]hepta-4,6-diene、Butanoic acid、Hexanoic acid和Hexanedioic acid, mono(2-ethylhexyl)ester;雞油之層析圖中找出的2-Heptenal, (E)-、1-Octen-3-ol和Nonanal;鴨油之層析圖中找出的2-Decenal, (E)-和Ethyl 5,8,11,14,17-icosapentaenoate;魚油之層析圖中找出的Acetic acid, N'-[3-(1-hydroxy-1-phenylethyl)phenyl]hydrazide和2,4-Heptadienal, (E,E)-;鵝油之層析圖中找出的Sorbitol、2,4-Decadienal, (E,E)-和Ethyl 5,8,11,14,17-icosapentaenoate;豬油之層析圖中找出的Hydroperoxide, 1-methylbutyl和1,3,5-Cycloheptatriene;羊油之層析圖中找出的Bicyclo[2.2.1]heptan-2-one, 1,3,3-trimethyl-、Cinnamaldehyde, (E)-和2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-, (all-E)-,上述共22個化合物作為不同動物油之揮發性指標成分。 於LLE-LC-MS/MS實驗中,找出23個可能的指標成分,分別為牛油之層析圖中找出的Isonicotinamide, N,N-diheptyl-和Linoleic acid;奶油之層析圖中找出的Nerol、9-Octadecenylsuccinic acid、Sarcosine, N-(3-methylbenzoyl)-, dodecyl ester和cis-13,16-Docasadienoic acid, methyl ester;雞油之層析圖中找出的Sarcosine, N-(cyclopentylcarbonyl)-, hexadecyl ester和Succinic acid, eicosyl 3-methylpentyl ester;鴨油之層析圖中找出的Dyclonine和2,6-Pyridinedicarboxaldehyde;魚油之層析圖中找出的Cyclohexanecarboxamide、Fumaric acid, dec-4-enyl pentadecyl ester、1-Heptanol, 2-propyl-、cis-13-Eicosenoic acid, methyl ester、Sarcosine, N-(cyclopentylcarbonyl)-, pentadecyl ester和L-Leucine, N-allyloxycarbonyl-N-methyl-, nonyl ester;鵝油之層析圖中找出的Sarcosylsarcosine, N-ethoxycarbonyl-, undecyl ester和Dioxacarb;豬油之層析圖中找出的Sarcosine, N-(cyclopentylcarbonyl)-, hexadecyl ester和Succinic acid, eicosyl 3-methylpentyl ester;羊油之層析圖中找出的3,4-Dimethylbenzamide和Phenylacetamide, N,N-dihexyl-,上述共23個化合物作為不同動物油之非揮發性指標成分,利用這45個可能性指標化合物於判斷是否有動物油品混摻之情況,研究所得可作為動物性油脂區分之參考。
URI: http://hdl.handle.net/11455/96345
文章公開時間: 10000-01-01

檔案 大小格式 
nchu-106-7104051003-1.pdf3.38 MBAdobe PDF 請求副本

在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。