Please use this identifier to cite or link to this item:
標題: The Spectroscopic Study of Saddled High-Valent Oxomanganese [ Mn(IV)=O and Mn(V)=O ] Porphyrins Complexes
作者: Bei-Wen Jiang
關鍵字: 錳卟啉
Manganese Porphyrin
Saddled Porphyrin
High-Valent Oxomanganese Porphyrins
引用: 1. K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, Science, 2004, 303, 1831-1838. 2. M. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. Yamamoto, H. Ago and J. R. Shen, Nature, 2015, 517, 99-103. 3. N. Cox, M. Retegan, F. Neese, D. A. Pantazis, A. Boussac and W. Lubitz, Science, 2014, 345, 804-808. 4. B. Kok, B. Forbush and M. McGloin, Photochemistry And Photobiology, 1970, 11, 457-475. 5. G. C. Dismukes, Chemical Reviews, 1996, 96, 2909-2926. 6. J. He and C. Hertweck, Chemistry & Biology, 2003, 10, 1225-1232. 7. R. Winkler, G. Zocher, I. Richter, T. Friedrich, G. E. Schulz and C. Hertweck, Angewandte Chemie-International Edition, 2007, 46, 8605-8608. 8. F. G. Doro, J. R. L. Smith, A. G. Ferreira and M. D. Assis, Journal Of Molecular Catalysis a-Chemical, 2000, 164, 97-108. 9. E. do Nascimento, G. D. Silva, F. A. Caetano, M. A. M. Fernandez, D. C. da Silva, M. de Carvalho, J. M. Pernaut, J. S. Reboucas and Y. M. Idemori, Journal Of Inorganic Biochemistry, 2005, 99, 1193-1204. 10. E. Rose, B. Andrioletti, S. Zrig and M. Quelquejeu-Ehteve, Chemical Society Reviews, 2005, 34, 573-583. 11. J. R. L. Smith, Y. Iamamoto and F. S. Vinhado, Journal Of Molecular Catalysis a-Chemical, 2006, 252, 23-30. 12. S. Das, C. D. Incarvito, R. H. Crabtree and G. W. Brudvig, Science, 2006, 312, 1941-1943. 13. L. Cavallo and H. Jacobsen, Angewandte Chemie-International Edition, 2000, 39, 589-592. 14. A. M. Stolzenberg and M. T. Stershic, Journal Of the American Chemical Society, 1988, 110, 6391-6402. 15. U. Ermler, W. Grabarse, S. Shima, M. Goubeaud and R. K. Thauer, Science, 1997, 278, 1457-1462. 16. R. K. Thauer, Microbiology-Uk, 1998, 144, 2377-2406. 17. H. C. Chow, R. Serlin and C. E. Strouse, Journal Of the American Chemical Society, 1975, 97, 7230-7237. 18. J. Deisenhofer and H. Michel, Science, 1989, 245, 1463-1473. 19. O. Elkabbani, C. H. Chang, D. Tiede, J. Norris and M. Schiffer, Biochemistry, 1991, 30, 5361-5369. 20. M. K. Geno and J. Halpern, Journal Of the American Chemical Society, 1987, 109, 1238-1240. 21. E. A. Brucker, J. S. Olson, G. N. Phillips, Y. Dou and M. IkedaSaito, J Biol Chem, 1996, 271, 25419-25422. 22. R. Liddington, Z. Derewenda, E. Dodson, R. Hubbard and G. Dodson, Journal Of Molecular Biology, 1992, 228, 551-579. 23. L. Banci, I. Bertini, H. B. Gray, C. Luchinat, T. Reddig, A. Rosato and P. Turano, Biochemistry, 1997, 36, 9867-9877. 24. W. Jentzen, M. C. Simpson, J. D. Hobbs, X. Song, T. Ema, N. Y. Nelson, C. J. Medforth, K. M. Smith, M. Veyrat, M. Mazzanti, R. Ramasseul, J. C. Marchon, T. Takeuchi, W. A. Goddard and J. A. Shelnutt, Journal Of the American Chemical Society, 1995, 117, 11085-11097. 25. C. Kiefl, N. Sreerama, R. Haddad, L. S. Sun, W. Jentzen, Y. Lu, Y. Qiu, J. A. Shelnutt and R. W. Woody, Journal Of the American Chemical Society, 2002, 124, 3385-3394. 26. W. Jentzen, J. G. Ma and J. A. Shelnutt, Biophysical Journal, 1998, 74, 753-763. 27. K. M. Barkigia, L. Chantranupong, K. M. Smith and J. Fajer, Journal of the American Chemical Society, 1988, 110, 7566-7567. 28. Z. Ren, T. Meyer and D. E. Mcree, Journal of Molecular Biology, 1993, 234, 433-445. 29. B. C. Finzel, P. C. Weber, K. D. Hardman and F. R. Salemme, Journal of Molecular Biology, 1985, 186, 627-643. 30. M. Yasui, S. Harada, Y. Kai, N. Kasai, M. Kusunoki and Y. Matsuura, Journal of Biochemistry, 1992, 111, 317-324. 31. T. Ema, M. O. Senge, N. Y. Nelson, H. Ogoshi and K. M. Smith, Angewandte Chemie-International Edition in English, 1994, 33, 1879-1881. 32. M. O. Senge, T. Ema and K. M. Smith, Journal of the Chemical Society-Chemical Communications, 1995, 733-734. 33. K. M. Barkigia, M. D. Berber, J. Fajer, C. J. Medforth, M. W. Renner and K. M. Smith, Journal of the American Chemical Society, 1990, 112, 8851-8857. 34. R. J. Cheng, P. Y. Chen, P. R. Gau, C. C. Chen and S. M. Peng, Journal of the American Chemical Society, 1997, 119, 2563-2569. 35. D. F. Evans, Journal of the Chemical Society, 1959, 2003-2005. 36. J. Loliger and Scheffol.R, Journal of Chemical Education, 1972, 49, 646. 37. D. Ostfeld and I. A. Cohen, Journal of Chemical Education, 1972, 49, 829. 38. R. S. Drago, in Physical Mehtods for Chemists, Saunders College, 1992, pp. 469-499. 39. F. A. Walker, in The Porphyrin Handbook, eds. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, San Diego, 2000, pp. 81-184. 40. I. Bertini, C. Luchinat and G. Parigi, Solution NMR of Parmagnetic Molecules, Elsevier, Amsterdam, 2001. 41. H. M. McConnell, The Journal of Chemical Physics, 1956, 24, 764. 42. H. M. Goff, in Iron Porphyrins, eds. A. B. P. Lever and H. B. Gray, Addison-Wesley, Massachusetts, 1983, pp. 237-281. 43. J. H. Van Vleck, The Theory of Electric ad Magnetic Susceptibilities, Oxford University Press, Oxford, 1932. 44. O. Kahn, Molecular Magnetism, Wiley-VCH, New York, 1993. 45. R. J. Cheng, S. H. Chang and K. C. Hung, Inorganic Chemistry, 2007, 46, 1948-1950. 46. H. M. Goff, Journal of the American Chemical Society, 1981, 103, 3714-3722. 47. J. Mispelter, M. Momenteau and J.-M. Lhoste, in Biological Magnetic Resonance, eds. L. J. Berliner and J. Reuben, Plenum Press, New York, 1993, pp. 299-356. 48. G. N. La Mar and F. A. Walker, in The Porphyrins ed. D. Dolphin, Academic Press, New York, 1979, pp. 61-157. 49. F. A. Walker and U. Simonis, in Biological Magnetic Resonance, eds. L. J. Berliner and J. Reuben, Plenum Press, New York, 1993, pp. 133-274. 50. N. V. Shokhirev and F. A. Walker, Journal of Physical Chemistry, 1995, 99, 17795-17804. 51. E. K. Zavoisky, Zhur. Eksperiment. i Theoret. Fiz., 1945, 15, 344-350. 52. 趙保路, 電子自旋共振技術在生物與醫學中的應用, 中國科學技術大學, 2009. 53. P. Rothemund, Journal of the American Chemical Society, 1941, 63, 267-270. 54. A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, journal of Organic Chemistry, 1967, 32, 476-476. 55. H. W. Whitlock Jr. and R. Hanauer, The Journal of Organic Chemistry, 1968, 33, 2169-2171. 56. D. H. R. Barton and S. Z. Zard, Journal Of the Chemical Society-Chemical Communications, 1985, 1098-1100. 57. N. Ono, H. Kawamura, M. Bougauchi and K. Maruyama, Tetrahedron, 1990, 46, 7483-7496. 58. K. Aoyagi, T. Haga, H. Toi, Y. Aoyama, T. Mizutani and H. Ogoshi, Bulletin Of the Chemical Society Of Japan, 1997, 70, 937-943. 59. D. Dolphin, Journal Of Heterocyclic Chemistry, 1970, 7, 275-283. 60. B. Evans, K. M. Smith and J. H. Fuhrhop, Tetrahedron Letters, 1977, 443-446. 61. J. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney and A. M. Marguerettaz, Journal of Organic Chemistry, 1987, 52, 827-836. 62. B. C. Milgram, K. Eskildsen, S. M. Richter, W. R. Scheidt and K. A. Scheidt, Journal of Organic Chemistry, 2007, 72, 3941-3944. 63. 李俞諼, 國立中興大學化學系碩士論文, 2010. 64. M. Sono, M. P. Roach, E. D. Coulter and J. H. Dawson, Chemical Reviews, 1996, 96, 2841-2887. 65. I. G. Denisov, T. M. Makris, S. G. Sligar and I. Schlichting, Chemical Reviews, 2005, 105, 2253-2277. 66. B. Meunier, Chemical Reviews, 1992, 92, 1411-1456. 67. R. Zhang and M. Newcomb, Journal Of the American Chemical Society, 2003, 125, 12418-12419. 68. D. Mansuy, Coordination Chemistry Reviews, 1993, 125, 129-141. 69. J. T. Groves, Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3569-3574. 70. D. G. Kellner, S. C. Hung, K. E. Weiss and S. G. Sligar, J Biol Chem, 2002, 277, 9641-9644. 71. I. Schlichting, J. Berendzen, K. Chu, A. M. Stock, S. A. Maves, D. E. Benson, B. M. Sweet, D. Ringe, G. A. Petsko and S. G. Sligar, Science, 2000, 287, 1615-1622. 72. R. Zhang, J. H. Horner and M. Newcomb, Journal Of the American Chemical Society, 2005, 127, 6573-6582. 73. M. Schappacher and R. Weiss, Inorganic Chemistry, 1987, 26, 1189-1190. 74. R. S. Czernuszewicz, Y. O. Su, M. K. Stern, K. A. Macor, D. Kim, J. T. Groves and T. G. Spiro, Journal Of the American Chemical Society, 1988, 110, 4158-4165. 75. C. L. Hill and B. C. Schardt, Journal Of the American Chemical Society, 1980, 102, 6374-6375. 76. J. T. Groves, W. J. Kruper and R. C. Haushalter, Journal Of the American Chemical Society, 1980, 102, 6375-6377. 77. J. T. Groves, J. B. Lee and S. S. Marla, Journal of the American Chemical Society, 1997, 119, 6269-6273. 78. W. Nam, I. Kim, M. H. Lim, H. J. Choi, J. S. Lee and H. G. Jang, Chemistry-a European Journal, 2002, 8, 2067-2071. 79. Y. Shimazaki, T. Nagano, H. Takesue, B. H. Ye, F. Tani and Y. Naruta, Angewandte Chemie-International Edition, 2004, 43, 98-100. 80. E. Martinand-Lurin, R. Gruber, P. Retailleau, P. Fleurat-Lessard and P. Dauban, Journal Of Organic Chemistry, 2015, 80, 1414-1426. 81. 陳卿謹, 國立中興大學化學系博士論文, 2015. 82. 馮剛彥, 國立中興大學化學系碩士論文, 2016. 83. 蔡文寶, 國立中興大學化學系碩士論文, 2011. 84. R. Zhang, D. N. Harischandra and M. Newcomb, Chemistry-a European Journal, 2005, 11, 5713-5720. 85. K. W. Kwong, T. H. Chen, W. L. Luo, H. Jeddi and R. Zhang, Inorg. Chim. Acta, 2015, 430, 176-183. 86. W. J. Song, M. S. Seo, S. D. George, T. Ohta, R. Song, M. J. Kang, T. Tosha, T. Kitagawa, E. I. Solomon and W. Nam, Journal Of the American Chemical Society, 2007, 129, 1268-1277. 87. T. Taguchi, R. Gupta, B. Lassalle-Kaiser, D. W. Boyce, V. K. Yachandra, W. B. Tolman, J. Yano, M. P. Hendrich and A. S. Borovik, Journal Of the American Chemical Society, 2012, 134, 1996-1999. 88. J. R. Winkler and H. B. Gray, in Molecular Electronic Structures Of Transition Metal Complexes I, eds. D. M. P. Mingos, P. Day and J. P. Dahl, 2012, pp. 17-28. 89. H. Y. Liu, F. Yam, Y. T. Xie, X. Y. Li and C. K. Chang, Journal Of the American Chemical Society, 2009, 131, 12890-12891. 90. W. Nam, H. J. Han, S. Y. Oh, Y. J. Lee, M. H. Choi, S. Y. Han, C. Kim, S. K. Woo and W. Shin, Journal Of the American Chemical Society, 2000, 122, 8677-8684. 91. R. Gupta, T. Taguchi, A. S. Borovik and M. P. Hendrich, Inorganic Chemistry, 2013, 52, 12568-12575.
摘要: For greener processing increases, biomimetic catalysts have become more and more important because they are more environmentally friendly and safer. In nature, the ubiquitous cytochrome P-450 enzymes can catalyze a wide variety of oxidation reactions with exceptionally high reactivity and selectivity. Synthetic manganese(III) porphyrins have also been extensively studied as cytochrome P-450 models in oxidation reactions of oxygen-atom-transfer mechanism. In this study, we have successfully synthesized several five-coordinate high-spin saddled manganese porphyrins, MnIII(OETPP)X (X = Cl-, ClO4- and OAc). These complexes possess deformed macrocycle as some enzymatic heme analogues, for which the structural characteristic is supposed to be distinct to the planar cases. For understanding the formation of high-valent manganese complexes, iodosylbenzene (PhIO) is adopted as oxidant to oxidize MnIII(OETPP)X (X = Cl-, ClO4- and OAc), inspected by means of UV-Vis, NMR, EPR spectroscopy and ESI-MS spectrometry. The UV-Vis spectroscopic data show that the manganese(III) porphyrins are oxidized to the high-valent oxomanganese porphyrins complexes, possibly including MnIV=O (intense absorption band at 400-500 nm) and MnV=O species (absorption band about at 700 nm). According to the 4K EPR spectral changes, we speculate that the signal corresponding to g∥ = 4 may refer to the high spin (S = 1) oxomanganese(V) species. In the ESI-MS analysis, we found an intense peak at m/z = 907 that it is directly assigned as oxomanganese(V), [MnV=O(OETPP)]+ (M.W. = 907.4 g/mol). Also, we found that adding deionized water can increase the lifetime of oxomanganese(V) species. In the oxidation reaction with organic substrate, the oxygen atom is transferred into cyclohexene to form cyclohexene oxide, which also confirms the existence of oxomanganese(V) species.
隨著綠色工業的興起,仿生的催化劑愈來被受到重視,因其較環保且安全,細胞色素P450是自然界中最為常見的催化氧化劑,其具有極高的反應性與活性,能進行各式各樣的氧化反應,而合成的三價錳金屬卟啉也經常被作為細胞色素P450的模型,用來研究氧分子的轉移反應與作用機制。 本實驗室成功的合成出具有高自旋的馬鞍型三價錳金屬卟啉[MnIII(OETPP)X (X = Cl、ClO4、OAc)],不同於文獻中較常被研究的平面金屬卟啉,由於其具有變形的結構與自然界中的金屬卟啉更為相似,接著我們使用亞碘酰苯(PhIO)將馬鞍型三價錳金屬卟啉氧化並使用一系列的光譜儀,紫外光可見光分光(UV-Vis)光譜儀、核磁共振(NMR)光譜儀、電子順磁共振(EPR)光譜儀和電灑法串聯質譜儀(ESI-MS)等,來分析錳金屬卟啉進行化學氧化前後之特徵變化。 我們於UV-Vis光譜中,觀察到三價錳卟啉氧化後可能形成高價態的氧代錳金屬卟啉混合物包含MnIV=O (吸收峰位於400-500 nm之間)與MnV=O (推測其吸收峰位於700 nm左右),根據EPR光譜變化中,我們推測在Parallel(∥) Mode所測得之 g = 3.9 的訊號,有極大的可能為高自旋(S = 1)五價錳的訊號,而我們在ESI-MS分析中確定五價錳[(OETPP)MnV=O]+ (M.W. = 907.4 g/mol)確實存在的證據,並且在添加去離子水時能使五價錳更易於被觀察到,最後於催化氧化的反應中,其成功的將環己烯催化氧化形成環氧環己烷,這也間接證實了五價錳的確存在。
文章公開時間: 2021-08-16
Appears in Collections:化學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.