請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/96348
標題: Development of highly selective light aldehydes electrochemical sensor
高選擇性低碳數醛類電化學感測器之研發與製造技術
作者: Shen-Liang Xu
許沈良
關鍵字: 金銅合金
高選擇性
低碳數醛類
AuCu3
highly selective
light aldehydes
引用: [1]Jamille V. Piovesan, Camila A. de Lima, Edson R. Santana, Almir Spinelli. Sensors and Actuators B:Chemical, 2017, 240, 838-847 [2]Gisele A.B. Mello, M. Janete Giz, Marian Chatenet, Giuseppe A. Camara. Journal of Electroanalytical Chemistry. 2015 [3]Ronald Vargas, Jorge Mostany, Carlos Borrás, Benjamín R. Scharifker, Sergio Blanco. Journal of Electroanalytical Chemistry, 2015, 740, 61-67 [4]派沃新能源科技有限公司。http://www.airtop10.com/about/ [5]洪啟智 (2006)。滾鍍金屬電極在電分析化學上的應用。國立中興大學化學系碩士論文 [6]Jun-Wei Su, Annamalai Senthil Kumar, Hsieh-Hsun Chung, Jyh-Myng Zen. Electroanalysis, 2005, 17, 1245-1250. [7]Ying Shih, Ku, Kuan-Lin Wu, Jun-Wei Sue, Annamalai Senthil Kumar, Jyh-Myng Zen. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 1446-1450. [8]Jun-Wei Sue, Chun-Yen Tai, Wan-Ling Cheng, Jyh-Myng Zen. Electrochemistry Communications, 2008, 10, 277-282. [9]Jun-Wei Sue, Chi-Jr Hung, Wei-Chung Chen, Jyh-Myng Zen. Electroanalysis, 2008, 20, 1647-1654. [10]Cheng-Teng Hsu, Hsieh-Hsun Chung, Dong-Mung Tsai, Mei-Yen Fang, Hung-Chan Hsiao, Jyh-Myng Zen, Anal. Chem. 2009, 81, 515-518. [11]Chun-Yen Tai, Jen-Lin Chang, Jyh-Myng Zen. Chem. Commun, 2009, 40, 6083-6085. [12]Chun-Yen Tai, Jen-Lin Chang, Jyh-Fu Lee, Ting-Shan Chan, Jyh-Myng Zen. Electrochimica Acta, 2011, 56, 3115-3121. [13]Ying-Chieh Chou, Chun-Yen Tai, Jyh-Fu Lee, Ting-Shan Chan, Jyh-Myng Zen. Electrochimica Acta, 2013, 104, 104-109. [14]吳俊宏 (2015)。金銅合金奈米孔洞電極於電分析化學上的應用。國立中興大學化學系碩士論文 [15]Gisele A.B. Mello, M. Janete Giz, Alexandre Crisci, Marian Chatenet , Giuseppe A. Camara, Journal of Electroanalytical Chemistry, 2011, 660, 85-90. [16]M. Zachut, F. Shapiro, N. Silanikove. Food Chemistry, 2016, 201, 270-274 [17]Jin-Wook Kwon. Food Control, 2017, 72, 268-275 [18]Xiuhui Tian, Yingjiang Xu, Xianghong Gong, Dianfeng Han, Zhongquan Wang, Quanli Zhou, Chunxiao Sun, Chuanbo Ren, Jinglin Xue, Chuanhai Xia. Science of the Total Environment, 2017, 576, 868-878 [19]J. Heyrovsky. Chem. Listy, 1992, 16,256. [20]周映傑 (2013)。拋棄式奈米孔洞金銅合金電極之置備與應用。國立中興大學化學系碩士論文 [21]Xudong Zhang, Wei Jiang. Computational Materials Science, 2015, 106, 35-44 [22]Afzal Shah, Mehwish Akhtar, Saima Aftab , Aamir Hassan Shah, Heinz-Bernhard Kraatz. Electrochimica Acta, 2017, 241, 281-290 [23]劉毅、宏永峰(1995)。金屬學與熱處理。北京:冶金工業出版社 [24]Chun-Yen Tai, Jen-Lin Chang, Jyh-Fu Lee, Ting-Shan Chan, Jyh-Myng Zen. Electrochimica Acta, 2011, 56, 3115-3121 [25]A.Yu, Z. Liang, J. Cho, F. Caruso. Nano Lett, 2003, 3, 1203-1207 [26]L. D. Burke, P. F. Nugent. Gold Bulletin, 1998, 31, 39-50 [27]W. L. Cheng, J. W. Sue, W. C. Chen, J. L. Chang, J. M. Zen, Anal. Chem, 2010, 82, 1157-1161 [28]國家環境毒物研究中心。http://nehrc.nhri.org.tw/toxic/toxfaq_detail.php?id=63 [29]物質安全表。http://drr.lib.ksu.edu.tw/bitstream/987654321/11724/1/066-01%A5%D2%EE%C7.pdf [30]Yan Zhang, Min Zhang, Zhiquan Cai, Meiqiong Chen, Faliang Cheng. Electrochimica Acta, 2012, 68, 172-177 [31]Sayed Reza Hosseini, Sharifeh Rezaee, Jahan-Bakhsh Raoof. Journal of Molecular Liquids, 2015, 212, 767-774 [32]Lianzhe Hu, Haijuan Li, Shuang Han, Guobao Xu. Journal of Electroanalytical Chemistry, 2011, 656, 289-292 [33]空氣中氣態之醛類化合物檢驗。http://www.niea.gov.tw/niea/pdf/AIR/A70512C.pdf [34]水中甲醛、乙醛和丙醛檢測方法-液相層析儀卅紫外光偵測器法。http://www.niea.gov.tw/niea/WATER/W78250B.htm [35]Che-Hong Chen, Leslie A. Cruz, Daria Mochly-Rosen. Proceedings of the National Academy of Sciences, 2015, 112, 10, 3074-3079 [36]美国華裔教授專家網。http://scholarsupdate.hi2net.com/news.asp?NewsID=17130 [37]Antoine Bach Delpeuch, Carsten Cremersa, Marian Chatenet. Electrochimica Acta, 2016, 188, 551-559 [38]Homann N, Jousimies-Somer H, Jokelainen K, Heine R, Salaspuro M. Carcinogenesis, 1997, 18, 1739-1743 [39]Klas Linderborg, Mikko Salaspuro, Satu Väkeväinen. Food and Chemical Toxicology, 2011, 49, 2103-2106 [40]周志宏 (2011)。超微電極化學感測器的研發製作。國立中興大學化學系碩士論文 [41]Chih-Yu Lo, Shiming Li, Yu Wang, Di Tan, Min-Hsiung Pan, Shengmin Sang, Chi-Tang Ho. Food Chemistry, 2008,107, 1099-1105 [42]Peter J. O'Brien, Abdullah Al Maruf, HoYin Lip, Horace Wong. Chemico-Biological Interactions, 2015, 234, 96-104 [43]CFH健康知識網。http://cfh.com.tw/Home.aspx [44]María Isabel Rodríguez-Cáceres, Mónica Palomino-Vasco, Nielene Mora-Diez, María Isabel Acedo-Valenzuela. Talanta, 2017, 168, 100-104 [45]M Isabel Rodríguez-Cáceres, Mónica Palomino-Vasco, Nielene Mora-Diez, M Isabel Acedo-Valenzuela. Food Chemistry, 2015, 187,159-165 [46]Camilla Svendsen, Anja Hortemo H?ie, Jan Alexander, Michael Murkovic, Trine Hus?y. Food and Chemical Toxicology, 2016, 94, 197-202
摘要: In this research, we report the preparation of nanostructured AuCu3 alloy on an easy for mass production barrel-plated gold electrode (AuBPE) by suitably manipulating the grain boundary diffusion through thermal annealing treatment and electrochemical activation in neutral solution, which has higher active surface area than that of AuBPE. We will discuss the electrochemical characteristics and performance of different AuCu3 electrode prepared by different methods. In the first part, we discuss the electrochemical behavior and structural characterization of the AuCu3 alloy electrode with SEM, EDS and XPS. In the second part, using the AuBPE with Cu–Ni–Au multilayer as a substrate, by suitably manipulating the grain boundary diffusion between individual metallic layers of Cu–Ni–Au, we demonstrate the formation of AuCu3 alloy by a simple thermal annealing process and use to detect formaldehyde、acetaldehyde、methanol and ethanol. We found that the electrode was selective for aldehyde and not for alcohol. In the third part, we improveed the appearance and structure to form second generation AuCu3 electrode, and ultilizing the electrode to detect aldehyde under the solution with alcohol. By applying a detection potential at +0.4 V vs. Ag/AgCl, high sensitivity and selectivity for detecting 300 µM acetaldehyde in the presence of 1 mM CH3OH and C2H5OH was achieved. The AuCu3 electrode shows good linearity in the range of 20 µM to 10 mM and a regression coefficient of 0.997. The limit of detection and the limit of quantification was calculated as 8 μM (S/N = 3) and 25 μM (S/N = 10), respectively. In the fourth part, we converted the substrate from copper to stainless steel sheets and made low copper content AuCu3 electrodes. It can improve long-term efficiency and by different scanning rate and potential window, again to determine the aldehyde oxidation mechanism.
本論文所使用之電極為以滾筒金電極為基材,經由高溫鍛燒、電化學掃描而製備出具有奈米孔洞結構之金銅合金電極,相較於一般金電極具有更高之活性表面積,且結合滾鍍技術具有量產之可能性,此研究依電化學特性、電極製備技術與電極穩定性分做三大部分作為探討。在第一部分中,針對金銅合金電極進行物性上探討,藉由SEM、EDS及XPS了解在高溫鍛燒和電化學剝除時其電極表面結構變換以及其不同階段之電化學行為。第二部分中,將銅釘作為底材,滾鍍上鎳層以及金層而成滾筒金電極,隨後以高溫鍛燒及電化學掃描製備出之一代金銅合金電極並對於甲、乙醛和甲、乙醇進行偵測,發現金銅合金電極對於醛類之選擇性,並探討金銅合金氧化醛類之機構。第三部分中,將一代滾筒金電極進行外觀結構調整而形成二代滾筒金電極 ,對於剝除溶液、鍛燒溫度及時間進行最佳化探討,並調整鍛燒時電極擺放位置以及擺放方法。經製程調整後製備之金銅合金電極以最佳化電位0.40 V vs. Ag/AgCl作為實驗條件偵測乙醛溶液,可達到理論偵測極限為8 µM(S/N=3)與定量極限為25 µM(S/N=10)。第四部分中,將原本的底材由銅釘更換為不鏽鋼圓片,控制銅層厚度而成低銅量金銅合金電極,經由測試相較於二代金銅合金電極可提高長效性及電極活性面積,並經由不同掃描速率及大小範圍電位視窗測試,再次確認金銅合金氧化醛類之機構。
URI: http://hdl.handle.net/11455/96348
文章公開時間: 2019-08-02
顯示於類別:化學系所

文件中的檔案:
檔案 大小格式 
nchu-106-7104051052-1.pdf9.62 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。