Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96393
DC FieldValueLanguage
dc.contributor徐堯煇zh_TW
dc.contributorYau-Heiu Hsuen_US
dc.contributor.author王盈順zh_TW
dc.contributor.authorYing-Shun Wangen_US
dc.contributor.other生物科技學研究所zh_TW
dc.date2017zh_TW
dc.date.accessioned2019-01-17T07:42:46Z-
dc.identifier.citation廖家德(2000)。竹嵌紋病毒病徵表現之遺傳分析及載體構築。國立中興大學農業生物科技學研究所博士論文。 許哲睿 (2013)。探討阿拉伯芥中CONSTANS-Like 9/10調控開花時間及植物發育之特性與功能性分析。國立中興大學生物科技研究所碩士論文。 Aguilar, E., Almendral, D., Allende, L., Pacheco, R., Chung, B. N., Canto, T. & Tenllado, F. (2015). The P25 protein of potato virus X (PVX) is the main pathogenicity determinant responsible for systemic necrosis in PVX-associated synergisms. Journal of Virology 89, 2090–2103. Alazem, M., He, M. H., Moffett, P. & Lin, N. S. (2017). Abscisic Acid Induces Resistance against Bamboo Mosaic Virus through Argonaute2 and 3. Plant Physiology 174, 339–355. Angell, S. M., Davies, C. & Baulcombe, D. C. (1996). Cell-to-cell movement of potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology 216, 197–201. Atabekov, J. G., Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V. & Poljakov, V. Y. (2000). The movement protein-triggered in situ conversion of potato virus X virion RNA from a nontranslatable into a translatable form. Virology 271, 259–263. Baumberger, N., Tsai, C. H., Lie, M., Havecker, E. & Baulcombe, D. C. (2007). The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Current Biology 17, 1609–1614. Bayne, E. H., Rakitina, D. V., Morozov, S. Y. & Baulcombe, D. C. (2005). Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing. The Plant Journal 44, 471–482.   Beck, D. L., Guilford, P. J., Voot, D. M., Andersen, M. T. & Forster, R. L. (1991). Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183, 695–702. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366. Bologna, N. G. & Voinnet, O. (2014). The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annual Review of Plant Biology 65, 473–503. Brosseau, C. & Moffett, P. (2015). Functional and Genetic Analysis Identify a Role for Arabidopsis ARGONAUTE5 in Antiviral RNA Silencing. Plant Cell 27, 1742–1754. Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Gilbert, K. B., Montgomery, T. A., Nguyen, T., Cuperus, J. T. & Carrington, J. C. (2012). Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24, 3613–3629. Carthew, R. W. & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell 136, 642–655. Chang, B. Y., Lin, N. S., Liou, D. Y., Chen, J. P., Liou, G. G. & Hsu, Y. H. (1997). Subcellular localization of the 28 kDa protein of the triple-gene-block of bamboo mosaic potexvirus. Journal of General Virology 78, 1175–1179. Chang, K. C., Chang, L. T., Huang, Y. W., Lai, Y. C., Lee, C. W., Liao, J. T., Lin, N. S., Hsu, Y. H. & Hu, C. C. (2017). Transmission of Bamboo mosaic virus in Bamboos Mediated by Insects in the Order Diptera. Frontiers in Microbiology 8. Chen, T. H., Chen, T. H., Hu, C. C., Liao, J. T., Lee, C. W., Liao, J. W., Lin, M. Y., Liu, H. J., Wang, M. Y., Lin, N. S. & Hsu, Y. H. (2012). Induction of protective immunity in chickens immunized with plant-made chimeric Bamboo mosaic virus particles expressing very virulent Infectious bursal disease virus antigen. Virus Research 166, 109–115.  Chen, T. H., Hu, C. C., Liao, J. T., Lee, Y. L., Huang, Y. W., Lin, N. S., Lin, Y. L. & Hsu, Y. H. (2017). Production of Japanese Encephalitis Virus Antigens in Plants Using Bamboo Mosaic Virus-Based Vector. Frontiers in Microbiology 8. Cheng, C. P. (2017). Host Factors Involved in the Intracellular Movement of Bamboo mosaic virus. Front Microbiol 8, 759. Chiu, M. H., Chen, I. H., Baulcombe, D. C. & Tsai, C. H. (2010). The silencing suppressor P25 of Potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway. Molecular Plant Pathology 11, 641–649. Csorba, T., Kontra, L. & Burgyan, J. (2015). viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 479–480, 85–103. Dickmeis, C., Fischer, R. & Commandeur, U. (2014). Potato virus X-based expression vectors are stabilized for long-term production of proteins and larger inserts. Biotechnology Journal 9, 1369–1379. DiMaio, F., Chen, C. C., Yu, X., Frenz, B., Hsu, Y. H., Lin, N. S. & Egelman, E. H. (2015). The molecular basis for flexibility in the flexible filamentous plant viruses. Nature Structural & Molecular Biology 22, 642–644. Ding, S. W., Rathjen, J. P., Li, W. X., Swanson, R., Healy, H. & Symons, R. H. (1995). Efficient infection from cDNA clones of cucumber mosaic cucumovirus RNAs in a new plasmid vector. Journal of General Virology 76, 459–464. Dunoyer, P., Pfeffer, S., Fritsch, C., Hemmer, O., Voinnet, O. & Richards, K. E. (2002). Identification, subcellular localization and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus. Plant J 29, 555-567. Faivre-Rampant, O., Gilroy, E. M., Hrubikova, K., Hein, I., Millam, S., Loake, G. J., Birch, P., Taylor, M. & Lacomme, C. (2004). Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiology 134, 1308–1316.   Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811. Garcia, D., Garcia, S., Pontier, D., Marchais, A., Renou, J. P., Lagrange, T. & Voinnet, O. (2012). Ago hook and RNA helicase motifs underpin dual roles for SDE3 in antiviral defense and silencing of nonconserved intergenic regions. Molecular Cell 48, 109–120. Hamilton, A. J. & Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952. Han, Y. T., Tsai, C. S., Chen, Y. C., Lin, M. K., Hsu, Y. H. & Meng, M. (2007). Mutational analysis of a helicase motif-based RNA 5'-triphosphatase/NTPase from bamboo mosaic virus. Virology 367, 41–50. Harvey, J. J., Lewsey, M. G., Patel, K., Westwood, J., Heimstadt, S., Carr, J. P. & Baulcombe, D. C. (2011). An antiviral defense role of AGO2 in plants. PLoS One 6, e14639. Haseloff, J., Siemering, K. R., Prasher, D. C. & Hodge, S. (1997). Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proceedings of the National Academy of Sciences of the United States of America 94, 2122–2127. Hiraguri, A., Itoh, R., Kondo, N., Nomura, Y., Aizawa, D., Murai, Y., Koiwa, H., Seki, M., Shinozaki, K. & Fukuhara, T. (2005). Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Molecular Biology 57, 173–188. Hsu, H. T., Hsu, Y. H., Bi, I. P., Lin, N. S. & Chang, B. Y. (2004). Biological functions of the cytoplasmic TGBp1 inclusions of bamboo mosaic potexvirus. Archives of Virology 149, 1027–1035. Huang, Y. P., Chen, I. H. & Tsai, C. H. (2017). Host Factors in the Infection Cycle of Bamboo mosaic virus. Frontiers in Microbiology 8, 437.   Hwang, J., Lee, S., Lee, J. H., Kang, W. H., Kang, J. H., Kang, M. Y., Oh, C. S. & Kang, B. C. (2015). Plant Translation Elongation Factor 1Bbeta Facilitates Potato Virus X (PVX) Infection and Interacts with PVX Triple Gene Block Protein 1. PLoS One 10, e0128014. Jaubert, M., Bhattacharjee, S., Mello, A. F., Perry, K. L. & Moffett, P. (2011). ARGONAUTE2 mediates RNA-silencing antiviral defenses against Potato virus X in Arabidopsis. Plant Physiology 156, 1556–1564. Jones, L., Keining, T., Eamens, A. & Vaistij, F. E. (2006). Virus-induced gene silencing of argonaute genes in Nicotiana benthamiana demonstrates that extensive systemic silencing requires Argonaute1-like and Argonaute4-like genes. Plant Physiology 141, 598–606. Kadare, G. & Haenni, A. L. (1997). Virus-encoded RNA helicases. Journal of Virology 71, 2583–2590. Kennerdell, J. R. & Carthew, R. W. (1998). Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026. Kobayashi, K., Sarrobert, C., Ares, X., Rivero, M. M., Maldonado, S., Robaglia, C. & Mentaberry, A. (2004). Over-expression of potato virus X TGBp1 movement protein in transgenic tobacco plants causes developmental and metabolic alterations. Plant Physiology and Biochemistry 42, 731–738. Lacomme, C. & Chapman, S. (2008). Use of potato virus X (PVX)-based vectors for gene expression and virus-induced gene silencing (VIGS). Current Protocols in Microbiology Chapter 16, Unit 16I 11. Lacorte, C., Ribeiro, S. G., Lohuis, D., Goldbach, R. & Prins, M. (2010). Potato virus X and Tobacco mosaic virus-based vectors compatible with the Gateway (TM) cloning system. Journal of Virological Methods 164, 7–13.   Lakatos, L., Csorba, T., Pantaleo, V., Chapman, E. J., Carrington, J. C., Liu, Y. P., Dolja, V. V., Calvino, L. F., Lopez-Moya, J. J. & Burgyan, J. (2006). Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. The EMBO Journal 25, 2768–2780. Lee, C. C., Ho, Y. N., Hu, R. H., Yen, Y. T., Wang, Z. C., Lee, Y. C., Hsu, Y. H., Meng, M. (2011). The Interaction between Bamboo Mosaic Virus Replication Protein and Coat Protein Is Critical for Virus Movement in Plant Hosts . Journal of Virology 85, 12022–12031. Leshchiner, A. D., Solovyev, A. G., Morozov, S. Y. & Kalinina, N. O. (2006). A minimal region in the NTPase/helicase domain of the TGBp1 plant virus movement protein is responsible for ATPase activity and cooperative RNA binding. Journal of General Virology 87, 3087–3095. Li, J., Yang, Z., Yu, B., Liu, J. & Chen, X. (2005). Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Current Biology 15, 1501–1507. Li, Y. I., Chen, Y. J., Hsu, Y. H., & Meng, M. (2001a). Characterization of the AdoMet-Dependent Guanylyltransferase Activity That Is Associated with the N Terminus of Bamboo Mosaic Virus Replicase. Journal of Virology 75, 782–788. Li, Y. I., Cheng, Y. M., Huang, Y. L., Tsai, C. H., Hsu, Y. H. & Meng, M. (1998). Identification and characterization of the Escherichia coli-expressed RNA-dependent RNA polymerase of bamboo mosaic virus. Journal of Virology 72, 10093–10099. Li, Y. I., Shih, T. W., Hsu, Y. H., Han, Y. T., Huang, Y. L., & Meng, M. (2001b). The Helicase-Like Domain of Plant Potexvirus Replicase Participates in Formation of RNA 5′ Cap Structure by Exhibiting RNA 5′-Triphosphatase Activity. Journal of Virology 75, 12114–12120. Lim, H. S., Vaira, A. M., Domier, L. L., Lee, S. C., Kim, H. G. & Hammond, J. (2010a). Efficiency of VIGS and gene expression in a novel bipartite potexvirus vector delivery system as a function of strength of TGB1 silencing suppression. Virology 402, 149-163.  Lim, H. S., Vaira, A. M., Reinsel, M. D., Bae, H., Bailey, B. A., Domier, L. L. & Hammond, J. (2010b). Pathogenicity of Alternanthera mosaic virus is affected by determinants in RNA-dependent RNA polymerase and by reduced efficacy of silencing suppression in a movement-competent TGB1. Journal of General Virology 91, 277–287. Lin, K. Y., Cheng, C. P., Chang, B. C. H., Wang, W. C., Huang, Y. W., Lee, Y. S., Huang, H. D., Hsu, Y. H. & Lin, N. S. (2010). Global Analyses of Small Interfering RNAs Derived from Bamboo mosaic virus and Its Associated Satellite RNAs in Different Plants. Plos One 5. Lin, M. K., Chang, B. Y., Liao, J. T., Lin, N. S. & Hsu, Y. H. (2004). Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement. Journal of General Virology 85, 251–259. Lin, M. K., Hu, C. C., Lin, N. S., Chang, B. Y. & Hsu, Y. H. (2006). Movement of potexviruses requires species-specific interactions among the cognate triple gene block proteins, as revealed by a trans-complementation assay based on the bamboo mosaic virus satellite RNA-mediated expression system. Journal of General Virology 87, 1357–1367. Lin, M.T., Kitajima, E.W., Cupertino, F.P., Costa, C.L. (1977). Partial-Purification and Some Properties of Bamboo Mosaic-Virus. Phytopathology 67, 1439–1443. Lin, N. S., Chen, C. C. (1991). Association of bamboo mosaic virus (BoMV) and BoMV-specific electron-dense crystalline bodies with chloroplasts. Phytopathology 81, 1551–1555. Lin, N. S., Lee, Y. S., Lin, B. Y., Lee, C. W. & Hsu, Y. H. (1996). The open reading frame of bamboo mosaic potexvirus satellite RNA is not essential for its replication and can be replaced with a bacterial gene. Proceedings of the National Academy of Sciences of the United States of America 93, 3138–3142. Lin, N. S., Lin, B. Y., Lo, N. W., Hu, C. C., Chow, T. Y. & Hsu, Y. H. (1994). Nucleotide sequence of the genomic RNA of bamboo mosaic potexvirus. Journal of General Virology 75, 2513–2518.  Lin, N. S., Lin, F. Z., Huang, T. Y., Hsu, Y. H. (1992). Genome Properties of Bamboo Mosaic-Virus. Phytopathology 82, 731–734. Lin, W. W., Yan, W. K., Yang, W. T., Yu, C. W., Chen, H. H., Zhang, W., Wu, Z. J., Yang, L. & Xie, L. H. (2017). Characterisation of siRNAs derived from new isolates of bamboo mosaic virus and their associated satellites in infected ma bamboo (Dendrocalamus latiflorus). Archives of Virology 162, 505–510. Liou, D. Y., Hsu, Y. H., Wung, C. H., Wang, W. H., Lin, N. S. & Chang, B. Y. (2000). Functional analyses and identification of two arginine residues essential to the ATP-utilizing activity of the triple gene block protein 1 of bamboo mosaic potexvirus. Virology 277, 336–344. Liou, M. R., Hu, C. C., Chou, Y. L., Chang, B. Y., Lin, N. S. & Hsu, Y. H. (2015). Viral elements and host cellular proteins in intercellular movement of Bamboo mosaic virus. Current Opinion in Virology 12, 99–108. Liou, M. R., Huang, Y. W., Hu, C. C., Lin, N. S. & Hsu, Y. H. (2014). A dual gene-silencing vector system for monocot and dicot plants. Plant Biotechnology Journal 12, 330–343. Llave, C., Kasschau, K. D. & Carrington, J. C. (2000). Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proceedings of the National Academy of Sciences of the United States of America 97, 13401–13406. Lough, T. J., Shash, K., Xoconostle-Cazares, B., Hofstra, K. R., Beck, D. L., Balmori, E., Forster, R. L. S. & Lucas, W. J. (1998). Molecular Dissection of the Mechanism by Which Potexvirus Triple Gene Block Proteins Mediate Cell-to-Cell Transport of Infectious RNA. Molecular Plant-Microbe Interactions 11, 801–814. Mallory, A. & Vaucheret, H. (2010). Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22, 3879–3889.   Martinez de Alba, A. E., Elvira-Matelot, E. & Vaucheret, H. (2013). Gene silencing in plants: a diversity of pathways. Biochimica et Biophysica Acta 1829, 1300–1308. Mathioudakis, M. M., Veiga, R. S., Canto, T., Medina, V., Mossialos, D., Makris, A. M. & Livieratos, I. (2013). Pepino mosaic virus triple gene block protein 1 (TGBp1) interacts with and increases tomato catalase 1 activity to enhance virus accumulation. Molecular Plant Pathology 14, 589–601. Maunoury, N. & Vaucheret, H. (2011). AGO1 and AGO2 act redundantly in miR408-mediated Plantacyanin regulation. PLoS One 6, e28729. Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G. J. & Qi, Y. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell 133, 116–127. Minato, N., Komatsu, K., Okano, Y., Maejima, K., Ozeki, J., Senshu, H., Takahashi, S., Yamaji, Y. & Namba, S. (2014). Efficient foreign gene expression in planta using a plantago asiatica mosaic virus-based vector achieved by the strong RNA-silencing suppressor activity of TGBp1. Archives of Virology 159, 885–896. Molnar, A., Melnyk, C. W., Bassett, A., Hardcastle, T. J., Dunn, R. & Baulcombe, D. C. (2010). Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328, 872–875. Morozov, S. Y., Solovyev, A. G., Kalinina, N. O., Fedorkin, O. N., Samuilova, O. V., Schiemann, J. & Atabekov, J. G. (1999). Evidence for two nonoverlapping functional domains in the potato virus X 25K movement protein. Virology 260, 55–63. Muthamilselvan, T., Lee, C. W., Cho, Y. H., Wu, F. C., Hu, C. C., Liang, Y. C., Lin, N. S. & Hsu, Y. H. (2016). A transgenic plant cell-suspension system for expression of epitopes on chimeric Bamboo mosaic virus particles. Plant Biotechnology Journal 14, 231–239.   Nakasugi, K., Crowhurst, R. N., Bally, J., Wood, C. C., Hellens, R. P. & Waterhouse, P. M. (2013). De novo transcriptome sequence assembly and analysis of RNA silencing genes of Nicotiana benthamiana. PLoS One 8, e59534. Nam, J., Nam, M., Bae, H., Lee, C., Lee, B. C., Hammond, J. & Lim, H. S. (2013). AltMV TGB1 Nucleolar Localization Requires Homologous Interaction and Correlates with Cell Wall Localization Associated with Cell-to-Cell Movement. The Plant Pathology Journal 29, 454–459. Ngo, H., Tschudi, C., Gull, K. & Ullu, E. (1998). Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proceedings of the National Academy of Sciences of the United States of America 95, 14687–14692. Okano, Y., Senshu, H., Hashimoto, M., Neriya, Y., Netsu, O., Minato, N., Yoshida, T., Maejima, K., Oshima, K., Komatsu, K., Yamaji, Y. & Namba, S. (2014). In Planta Recognition of a Double-Stranded RNA Synthesis Protein Complex by a Potexviral RNA Silencing Suppressor. Plant Cell 26, 2168–2183. Odokonyero, D., Mendoza, M. R., Alvarado, V. Y., Zhang, J., Wang, X. & Scholthof, H. B. (2015). Transgenic down-regulation of ARGONAUTE2 expression in Nicotiana benthamiana interferes with several layers of antiviral defenses. Virology 486, 209–218. Park, M. R., Jeong, R. D. & Kim, K. H. (2014). Understanding the intracellular trafficking and intercellular transport of potexviruses in their host plants. Frontiers in Plant Science 5, 60. Pontier, D., Picart, C., Roudier, F., Garcia, D., Lahmy, S., Azevedo, J., Alart, E., Laudie, M., Karlowski, W. M., Cooke, R., Colot, V., Voinnet, O. & Lagrange, T. (2012). NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis. Molecular Cell 48, 121–132. Pumplin, N. & Voinnet, O. (2013). RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology 11, 745–760.  Qu, F. (2010). Antiviral role of plant-encoded RNA-dependent RNA polymerases revisited with deep sequencing of small interfering RNAs of virus origin. Molecular Plant-Microbe Interactions 23, 1248–1252. Rajagopalan, R., Vaucheret, H., Trejo, J. & Bartel, D. P. (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & Development 20, 3407–3425. Ratcliff, F., Harrison, B. D. & Baulcombe, D. C. (1997). A similarity between viral defense and gene silencing in plants. Science 276, 1558–1560. Ruiz, M. T., Voinnet, O. & Baulcombe, D. C. (1998). Initiation and maintenance of virus-induced gene silencing. Plant Cell 10, 937–946. Schardl, C. L., Byrd, A. D., Benzion, G., Altschuler, M. A., Hildebrand, D. F. & Hunt, A. G. (1987). Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61, 1–11. Scholthof, H. B., Alvarado, V. Y., Vega-Arreguin, J. C., Ciomperlik, J., Odokonyero, D., Brosseau, C., Jaubert, M., Zamora, A. & Moffett, P. (2011). Identification of an ARGONAUTE for antiviral RNA silencing in Nicotiana benthamiana. Plant Physiology 156, 1548–1555. Senshu, H., Ozeki, J., Komatsu, K., Hashimoto, M., Hatada, K., Aoyama, M., Kagiwada, S., Yamaji, Y. & Namba, S. (2009). Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. Journal of General Virology 90, 1014–1024. Seo, E. Y., Nam, J., Kim, H. S., Park, Y. H., Hong, S. M., Lakshman, D., Bae, H., Hammond, J. & Lim, H. S. (2014). Selective Interaction Between Chloroplast beta-ATPase and TGB1L88 Retards Severe Symptoms Caused by Alternanthera mosaic virus Infection. The Plant Pathology Journal 30, 58–67.   Siddiqui, S. A., Sarmiento, C., Truve, E., Lehto, H. & Lehto, K. (2008). Phenotypes and functional effects caused by various viral RNA silencing suppressors in transgenic Nicotiana benthamiana and N. tabacum. Molecular Plant-Microbe Interactions 21, 178–187. Stephan, D., Slabber, C., George, G., Ninov, V., Francis, K. P. & Burger, J. T. (2011). Visualization of plant viral suppressor silencing activity in intact leaf lamina by quantitative fluorescent imaging. Plant Methods 7, 25. Szittya, G. & Burgyan, J. (2013). RNA interference-mediated intrinsic antiviral immunity in plants. Current Topics in Microbiology and Immunology 371, 153–181. Takahashi, S., Komatsu, K., Kagiwada, S., Ozeki, J., Mori, T., Hirata, H., Yamaji, Y., Ugaki, M. & Namba, S. (2006). The efficiency of interference of Potato virus X infection depends on the target gene. Virus Research 116, 214–217. Tilsner, J., Linnik, O., Wright, K. M., Bell, K., Roberts, A. G., Lacomme, C., Santa Cruz, S. & Oparka, K. J. (2012). The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. Plant Physiology 158, 1359–1370. Tsai, C. H., Cheng, C. P., Peng, C. W., Lin, B. Y., Lin, N. S. & Hsu, Y. H. (1999). Sufficient length of a poly(A) tail for the formation of a potential pseudoknot is required for efficient replication of bamboo mosaic potexvirus RNA. Journal of Virology 73, 2703–2709. Vargason, J. M., Szittya, G., Burgyan, J. & Hall, T. M. (2003). Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115, 799–811. Vaucheret, H. (2008). Plant ARGONAUTES. Trends in Plant Science 13, 350-358. Voinnet, O., Lederer, C. & Baulcombe, D. C. (2000). A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103, 157–167.   Voinnet, O., Vain, P., Angell, S. & Baulcombe, D. C. (1998). Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95, 177-187. Wassenegger, M. & Krczal, G. (2006). Nomenclature and functions of RNA-directed RNA polymerases. Trends in Plant Science 11, 142–151. Wung, C. H., Hsu, Y. H., Liou, D. Y., Huang, W. C., Lin, N. S. & Chang, B. Y. (1999). Identification of the RNA-binding sites of the triple gene block protein 1 of bamboo mosaic potexvirus. Journal of General Virology 80, 1119–1126. Xia, Z., Zhu, Z., Zhu, J. & Zhou, R. (2009). Recognition mechanism of siRNA by viral p19 suppressor of RNA silencing: a molecular dynamics study. Biophysical Journal 96, 1761–1769. Yan, F., Lu, Y., Lin, L., Zheng, H. & Chen, J. (2012). The ability of PVX p25 to form RL structures in plant cells is necessary for its function in movement, but not for its suppression of RNA silencing. PLoS One 7, e43242. Yang, C. D., Liao, J. T., Lai, C. Y., Jong, M. H., Liang, C. M., Lin, Y. L., Lin, N. S., Hsu, Y. H. & Liang, S. M. (2007). Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes. BMC Biotechnology 7, 62. Yang, Z., Ebright, Y. W., Yu, B. & Chen, X. (2006). HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide. Nucleic Acids Research 34, 667–675. Zhang, C., Wu, Z. J., Li, Y. & Wu, J. G. (2015). Biogenesis, Function, and Applications of Virus-Derived Small RNAs in Plants. Frontiers in Microbiology 6. Zhu, H., Hu, F., Wang, R., Zhou, X., Sze, S. H., Liou, L. W., Barefoot, A., Dickman, M. & Zhang, X. (2011). Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145, 242–256.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/96393-
dc.description.abstract基因靜默是一種寄主對抗病毒入侵的重要防禦機制,許多病毒則編譯基因靜默抑制子(RSS),以作為反向防禦的機制。竹嵌紋病毒(Bamboo mosaic virus, BaMV) 是一個單一基因組、正向、單股的RNA病毒,為Potexvirus屬的成員,具有五個轉譯區(ORF)。其中第二、第三及第四個ORF形成一個三重疊基因區,所轉譯出的三個蛋白質負責病毒在細胞間的移動功能。三重疊基因區的第一個轉譯蛋白(TGBp1)是一個多功能的蛋白質,在BaMV分離株S中稱為P28,具有核苷三磷酸酶及RNA解旋酶等功能。許多報導指出potexviruses的TGBp1具有抑制基因靜默的功能,但BaMV的TGBp1是否具有RSS的活性則尚未被闡明。在本研究中,進行了不同BaMV分離株之TGBp1抑制基因靜默的活性分析。透過農桿菌滲入的方法,在GFP轉基因的圓葉菸草品系16c上共同表達TGBp1及同源性的GFP時,增強的GFP訊號證明了TGBp1具有抑制基因靜默的活性。不同分離株的TGBp1相較於P28有85-98%的氨基酸序列相似性,而比較基因靜默活性後的結果發現分離株G3-1及G4的TGBp1具有約1.4倍於P28的靜默抑制活性;G1-1的TGBp1則與P28的活性之間無顯著差異。因此,就TGBp1的功能造成不同的BaMV分離株之間感染力的不同,可能是源於不同能力的靜默抑制能力或者移動功能。本研究提供鑑定TGBp1靜默抑制能力的系統,將來可應用於尋找TGBp1抑制基因靜默之活性區域。此外,為了鑑定BaMV的TGBp1是否會與圓葉菸草的沉默抑制因子有蛋白間的交互作用,利用農桿菌在圓葉菸草中表達了NbAGO及NbRDR6蛋白,但僅有NbAGO2、NbAGO4a及NbRDR6可被偵測到。zh_TW
dc.description.abstractRNA silencing is a critical defense mechanism for host to against virus infection. To rival the defense mechanism, many plant viruses encode RNA silencing suppressors (RSSs) as a counter defense. Bamboo mosaic virus (BaMV) is a monopartite, positive-sense, single-stranded RNA virus. It is a member of the genus of Potexvirus, which contains five open reading frames (ORFs). The 2-4 ORFs are overlapping triple gene block; and the translated proteins are involved in the cell-to-cell movement of virus. Triple gene block protein 1 (TGBp1) is a multi-functional protein, named P28 in BaMV-S, which functions as NTPase and RNA helicase. There are many reports indicated that TGBp1 of potexviruses can suppress RNA silencing, but whether TGBp1 of BaMV has the RSS activity is not clarified. In this study, the RSS activity of TGBp1s from different BaMV isolates was analyzed. The agrobacterium-mediated transient co-expression of green fluorescent protein (GFP) and RSSs in GFP-transgenic Nicotiana benthamiana line 16c could induce homology-dependent silencing. GFP signal was increased when co-expression of TGBp1, suggesting that TGBp1 of BaMV can suppress RNA silencing. The TGBp1s from different isolates showed 85-98% amino acid sequence identity to P28. In the comparison of silencing suppression activity, TGBp1s of G3-1 and G4 are 1.4 times to the P28; there is no significant difference between TGBp1 of G1-1 and P28. Therefore, the infectivity difference among different BaMV isolates might because of their differences in TGBp1 silencing suppression ability or movement function. The analysis system established in this study provides a method for further identification of the silencing suppressor active sites of BaMV TGBp1. In addition, to identify if the TGBp1 of BaMV could interact with the silencing factors of N. benthamiana, NbAGOs and NbRDR6 were transiently expressed, but only NbAGO2, NbAGO4a, and NbRDR6 were detectable in N. benthamiana.en_US
dc.description.tableofcontentsContents 摘要 i Abstract ii Contents iii List of Tables v List of Figures vi Introduction 1 1. Bamboo mosaic virus 1 2. Triple Gene Block protein 1 of potexviruses 2 3. RNA interference 5 4. Aim 9 Materials and Methods 10 1. Detection of BaMV accumulation in bamboo leaves 10 1.1. Total protein extraction 10 1.2. Western blot analysis 10 2. Agro-inoculation of BaMV-S and BaMV-O 11 2.1. Plasmid pKB-S 11 2.2. Plasmid pKB-O construction 11 2.3. Electroporation 12 2.4. Agrobacteria infiltration 12 3. Construction of TGBp1s from different BaMV isolates 12 3.1. Virus particles purification 12 3.2. Viral RNA extraction 13 3.3. Reverse transcription 14 3.4. Cloning of BaMV TGBp1s and construction of other RSS 14 4. Evaluation of the silencing suppressors activity 15 4.1. mGFP-transgenic N. benthamiana line16c 15 4.2. Electroporation 15 4.3. Agrobacteria infiltration 16 4.4. Total protein extraction 16 4.5. Western blot analysis 16 4.6. Quantification and calculation of western blot signals 16 5. Transient expression of N. benthamiana silencing factors 17 5.1. Total RNA extraction 17 5.2. RT-PCR and silencing factors construction 18 5.3. Agrobactera infiltration 18 5.4. Western blot analysis 18 Results 19 1. Construction of TGBp1s from different BaMV isolates 19 1.1. TGBp1s construction 19 1.2. TGBp1s sequence alignment 19 2. Evaluation of the silencing suppressors activity 20 2.1. Silencing suppressors activity test in N. benthamiana 20 2.2. Silencing suppressors activity test in N. benthamiana line 16c 21 3. Transient expression of N. benthamiana silencing factors 22 Discussion 23 1. The relationship between silencing suppressor activity and virus infectivity 23 2. The potential residues associated with the suppressor ability of TGBp1 24 3. The N. benthamiana silencing factors might interact with TGBp1 25 4. The application of suitable TGBp1 for enhancement of virus infection 26 References 28 Tables and Figures 41zh_TW
dc.language.isoen_USzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2020-07-25起公開。zh_TW
dc.subject竹嵌紋病毒zh_TW
dc.subject基因靜默抑制子zh_TW
dc.subjectBamboo mosaic virusen_US
dc.subjectRNA silencing suppressoren_US
dc.title不同竹嵌紋病毒株中TGBp1抑制基因靜默之活性分析zh_TW
dc.titleIdentification and Comparison of the Silencing Suppressor Activities of TGBp1s from Different Bamboo mosaic virus Isolatesen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2020-07-25zh_TW
dc.date.openaccess2020-07-25-
Appears in Collections:生物科技學研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.