Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96405
標題: 阿拉伯芥蛋白激酶AtYAK1參與受光調控的生長與發育
Functional characterization of a plant dual-specificity tyrosine phosphorylation-regulated kinase, AtYAK1, in light-regulated growth and development
作者: 黃文郁
Wen-Yu Huang
關鍵字: DYRK
AtYAK1
概日韻律
光形態發生
果莢發育
DYRK
AtYAK1
circadian clock
photomorphogenesis
silique
fertility
引用: Aranda S., Laguna A. & de la Luna S. (2011) DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. Faseb j, 25, 449-462. Aschoff J. (1979) Circadian rhythms: influences of internal and external factors on the period measured in constant conditions. Z Tierpsychol, 49, 225-249. Becker W. (2012) Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control. Cell Cycle, 11, 3389-3394. Becker W. & Joost H.G. (1999) Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. Prog Nucleic Acid Res Mol Biol, 62, 1-17. Blasing O.E., Gibon Y., Gunther M., Hohne M., Morcuende R., Osuna D., . . . Stitt M. (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell, 17, 3257-3281. Briggs W.R. (2014) Phototropism: some history, some puzzles, and a look ahead. Plant Physiol, 164, 13-23. Casal J.J. (2013) Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol, 64, 403-427. Chalker-Scott L. (1999) Environmental Significance of Anthocyanins in Plant Stress Responses. Photochemistry and Photobiology, 70, 1-9. Chen H., Zhang J., Neff M.M., Hong S.W., Zhang H., Deng X.W. & Xiong L. (2008) Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci U S A, 105, 4495-4500. Chen L. & Liu Y.G. (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol, 65, 579-606. de Wit M., Galvao V.C. & Fankhauser C. (2016) Light-Mediated Hormonal Regulation of Plant Growth and Development. Annu Rev Plant Biol, 67, 513-537. Dodd A.N., Salathia N., Hall A., Kevei E., Toth R., Nagy F., . . . Webb A.A. (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science, 309, 630-633. Earley K.W., Haag J.R., Pontes O., Opper K., Juehne T., Song K. & Pikaard C.S. (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J, 45, 616-629. Fankhauser C. & Christie J.M. (2015) Plant phototropic growth. Curr Biol, 25, R384-389. Fotaki V., Dierssen M., Alcantara S., Martinez S., Marti E., Casas C., . . . Arbones M.L. (2002) Dyrk1A haploinsufficiency affects viability and causes developmental delay and abnormal brain morphology in mice. Mol Cell Biol, 22, 6636-6647. Fraser D.P., Hayes S. & Franklin K.A. (2016) Photoreceptor crosstalk in shade avoidance. Curr Opin Plant Biol, 33, 1-7. Garrett S. & Broach J. (1989) Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev, 3, 1336-1348. Gould K., McKelvie J. & Markham K. (2002) Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant, Cell & Environment, 25, 1261-1269. Green R.M., Tingay S., Wang Z.Y. & Tobin E.M. (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol, 129, 576-584. Greenham K. & McClung C.R. (2015) Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet, 16, 598-610. Ho Y., Gruhler A., Heilbut A., Bader G.D., Moore L., Adams S.L., . . . Tyers M. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 415, 180-183. Kajikawa M., Sawaragi Y., Shinkawa H., Yamano T., Ando A., Kato M., . . . Fukuzawa H. (2015) Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency. Plant Physiology, 168, 752-764. Kaul M.L. (2012) Male sterility in higher plants (vol. 10). Springer Science & Business Media (Berlin/Heidelberg, Germany). Kim D., Ntui V.O. & Xiong L. (2016) Arabidopsis YAK1 regulates abscisic acid response and drought resistance. FEBS Lett, 590, 2201-2209. Kim D., Ntui V.O., Zhang N. & Xiong L. (2015) Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase. FEBS Lett, 589, 3321-3327. Lange H., Shropshire W. & Mohr H. (1971) An Analysis of Phytochrome-mediated Anthocyanin Synthesis. Plant Physiol, 47, 649-655. Lee P., Cho B.R., Joo H.S. & Hahn J.S. (2008) Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsf1 and Msn2/Msn4. Mol Microbiol, 70, 882-895. Li J., Yang L., Jin D., Nezames C.D., Terzaghi W. & Deng X.W. (2013) UV-B-induced photomorphogenesis in Arabidopsis. Protein Cell, 4, 485-492. Lopez-Molina L., Mongrand S. & Chua N.H. (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci U S A, 98, 4782-4787. Lopez-Molina L., Mongrand S., McLachlin D.T., Chait B.T. & Chua N.H. (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J, 32, 317-328. Meinke D.W. & Sussex I.M. (1979) Embryo-lethal mutants of Arabidopsis thaliana: A model system for genetic analysis of plant embryo development. Developmental Biology, 72, 50-61. Millar A.A. & Gubler F. (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell, 17, 705-721. Miyata Y. & Nishida E. (2011) DYRK1A binds to an evolutionarily conserved WD40-repeat protein WDR68 and induces its nuclear translocation. Biochim Biophys Acta, 1813, 1728-1739. Mockler T.C., Michael T.P., Priest H.D., Shen R., Sullivan C.M., Givan S.A., . . . Chory J. (2007) The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol, 72, 353-363. Montgomery B.L., Yeh K.C., Crepeau M.W. & Lagarias J.C. (1999) Modification of distinct aspects of photomorphogenesis via targeted expression of mammalian biliverdin reductase in transgenic Arabidopsis plants. Plant Physiol, 121, 629-639. Moriya H., Shimizu-Yoshida Y., Omori A., Iwashita S., Katoh M. & Sakai A. (2001) Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Genes Dev, 15, 1217-1228. Neer E.J., Schmidt C.J., Nambudripad R. & Smith T.F. (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature, 371, 297-300. Neill S.O. & Gould K.S. (2003) Anthocyanins in leaves: light attenuators or antioxidants? Functional Plant Biology, 30, 865-873. Nihira N.T. & Yoshida K. (2015) Engagement of DYRK2 in proper control for cell division. Cell Cycle, 14, 802-807. Nozue K., Covington M.F., Duek P.D., Lorrain S., Fankhauser C., Harmer S.L. & Maloof J.N. (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature, 448, 358-361. Plautz J.D., Straume M., Stanewsky R., Jamison C.F., Brandes C., Dowse H.B., . . . Kay S.A. (1997) Quantitative analysis of Drosophila period gene transcription in living animals. J Biol Rhythms, 12, 204-217. Ritterhoff S., Farah C.M., Grabitzki J., Lochnit G., Skurat A.V. & Schmitz M.L. (2010) The WD40-repeat protein Han11 functions as a scaffold protein to control HIPK2 and MEKK1 kinase functions. Embo j, 29, 3750-3761. Sawhney V. (2004) Photoperiod-sensitive male-sterile mutant in tomato and its potential use in hybrid seed production. Journal of horticultural science & biotechnology, 79, 138-141. Schulz-Raffelt M., Chochois V., Auroy P., Cuine S., Billon E., Dauvillee D., . . . Peltier G. (2016) Hyper-accumulation of starch and oil in a Chlamydomonas mutant affected in a plant-specific DYRK kinase. Biotechnol Biofuels, 9, 55. Shen Y., Khanna R., Carle C.M. & Quail P.H. (2007) Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiol, 145, 1043-1051. Skurat A.V. & Dietrich A.D. (2004) Phosphorylation of Ser640 in muscle glycogen synthase by DYRK family protein kinases. J Biol Chem, 279, 2490-2498. Smith S.M., Fulton D.C., Chia T., Thorneycroft D., Chapple A., Dunstan H., . . . Smith A.M. (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol, 136, 2687-2699. Smith T.F., Gaitatzes C., Saxena K. & Neer E.J. (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci, 24, 181-185. Song Y.H., Shim J.S., Kinmonth-Schultz H.A. & Imaizumi T. (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol, 66, 441-464. Soppa U. & Becker W. (2015) DYRK protein kinases. Curr Biol, 25, R488-489. Southern M.M., Brown P.E. & Hall A. (2006) Luciferases as reporter genes. Methods Mol Biol, 323, 293-305. Souza G.M., da Silva A.M. & Kuspa A. (1999) Starvation promotes Dictyostelium development by relieving PufA inhibition of PKA translation through the YakA kinase pathway. Development, 126, 3263-3274. Souza G.M., Lu S. & Kuspa A. (1998) YakA, a protein kinase required for the transition from growth to development in Dictyostelium. Development, 125, 2291-2302. Steyn W., Wand S., Holcroft D. & Jacobs G. (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytologist, 155, 349-361. Waadt R., Schmidt L.K., Lohse M., Hashimoto K., Bock R. & Kudla J. (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J, 56, 505-516. Wang Y., Wu J.F., Nakamichi N., Sakakibara H., Nam H.G. & Wu S.H. (2011) LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock. Plant Cell, 23, 486-498. Wegiel J., Gong C.X. & Hwang Y.W. (2011) The role of DYRK1A in neurodegenerative diseases. Febs j, 278, 236-245. Wu H.Y., Liu K.H., Wang Y.C., Wu J.F., Chiu W.L., Chen C.Y., . . . Lai E.M. (2014) AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods, 10, 19. Wu J.-F., Tsai H.-L., Joanito I., Wu Y.-C., Chang C.-W., Li Y.-H., . . . Wu S.-H. (2016) LWD–TCP complex activates the morning gene CCA1 in Arabidopsis. Nature Communications, 7, 13181. Wu J.F., Wang Y. & Wu S.H. (2008) Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. Plant Physiol, 148, 948-959. Wu S.H. (2014) Gene expression regulation in photomorphogenesis from the perspective of the central dogma. Annu Rev Plant Biol, 65, 311-333. Xu D., Li J., Gangappa S.N., Hettiarachchi C., Lin F., Andersson M.X., . . . Holm M. (2014) Convergence of Light and ABA signaling on the ABI5 promoter. PLoS Genet, 10, e1004197. Zhang H., Xu C., He Y., Zong J., Yang X., Si H., . . . Zhang D. (2013) Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proceedings of the National Academy of Sciences, 110, 76-81. Zhou S., Jia L., Chu H., Wu D., Peng X., Liu X., . . . Zhao L. (2016) Arabidopsis CaM1 and CaM4 Promote Nitric Oxide Production and Salt Resistance by Inhibiting S-Nitrosoglutathione Reductase via Direct Binding. PLoS Genet, 12, e1006255.
摘要: 光線為植物生長發育重要的環境因子。對植物而言,適切地感受到外界的光線能幫助適應環境的轉變。在本實驗室先前的研究中,發現LWD1和LWD2為植物生理時鐘重要的調節因子,負責調控概日韻律和開花時間。本論文則進一步研究與LWDs結合的蛋白激酶AtYAK1。AtYAK1為雙專一性酪氨酸磷酸化蛋白激酶家族 [Dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family] 的一員,其酵素活性區域具高度跨物種的相似性,為重要的生長調節因子。在本論文中,發現AtYAK1會與LWDs結合而拮抗其功能,以控制概日韻律及開花時間。除此之外,進一步發現AtYAK1促進由光所調控之光形態發生(photomorphogenesis)及果莢生長,證明AtYAK1對於光調控之生理反應扮演重要角色。期望本篇研究能進一步衍生,作為農作物轉譯科學之基石。
Light controls vegetative and reproductive development of plants. For a plant, sensing the light input properly ensures coordination with the ever-changing environment. Previously, we found that LIGHT-REGULATED WD1 (LWD1) and LWD2 regulate the circadian clock and photoperiodic flowering. Here we identified Arabidopsis YET ANOTHER KINASE1 (AtYAK1), an evolutionarily conserved protein and a member of dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs), as an interacting protein of LWDs. Our study revealed that AtYAK1 is an important regulator for various light responses, including the circadian clock, photomorphogenesis and reproductive development. AtYAK1 could antagonize the function of LWDs in regulating the circadian clock and photoperiodic flowering. By examining phenotypes of atyak1, we found that AtYAK1 regulated light-induced period-length shortening and photomorphogenic development. Moreover, AtYAK1 mediated plant fertility especially under inferior light conditions including low light and short-day length. This study discloses a new regulator connecting environmental light to plant growth.
URI: http://hdl.handle.net/11455/96405
文章公開時間: 2020-07-31
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.