Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96435
標題: 亞熱帶溫室微氣候最佳化控制之模擬與分析-萵苣栽培為例
Simulation and Analysis of Microclimate Optimal Control in Subtropical Greenhouse-Lettuce Cultivation as Example
作者: 楊清富
Ching-Fu Yang
關鍵字: 亞熱帶
溫室
微氣候
最佳化控制
模擬
subtropical
greenhouse
microclimate
optimal control
simulation
引用: 方煒。1992。多層透明被覆材料太陽能輻射性質之理論探討:Ι.使用光跡追蹤法。農業機械學刊 1(4):31-41。 方怡丹、林春良。2012。國內設施園藝產業發展現況與展望。精密設施工程與植物工場實用化技術研討會 pp:25-32。 陳加忠。1992。塑膠布溫室環控系統之研究。溫室環控自動感測技術研討會專集pp:135-154。 陳加忠。2008。溫室微氣候溫度模式-數學、物理與農業之一。中興大學生物系統工程研究室。 楊清富、林聖泉。2012。圖控程式應用於溫室環控之研究。臺南區農業改良場研究彙報59:54-70。 楊清富、林聖泉。2017。滴灌滴水器迷宮流道流場之模擬與分析。農業工程學報第六十四卷第一期(2017年10月2日接受刊登)。 黃瑞章、彭瑞菊、劉依昌、蔡孟旅、黃秀雯、楊藹華、正安秀。2013。小果番茄健康管理執行成果。102年度重點作物健康管理生產體系及關鍵技術之研發成果研討會論文集 pp:39-45。 蔡致榮、邱相文。2012。荷蘭與日本植物工場最新發展。精密設施工程與植物工場實用化技術研討會論文集,臺南區農業改良場出版pp:1-15。 交通部中央氣象局。http://www.cwb.gov.tw。 Arnold, E. 1988. Zur optimalen Steuerung zeitdiskreter dynamischer Prozesse mittels nichtlinearer Optimierung mit Anwendungen auf die Klimasteuerung von Gewächshäusern [in German]. Ph.D. Thesis, Technische Hochschule, Ilmenau, Germany. Bakker, J.C. 1991. Analysis of humidity effects on growth and production of glasshouse fruit vegetables. Ph.D. Thesis, Wageningen Agricultural University, Wageningen. Bakker, J. C., Bot, G. P. A., Challa, H., Van de Braak, N. J. 1995. Greenhouse climate control-an integrated approach. Wageningen Pers, Wageningen, The Netherlands. Baptista F. J. 2007. Modelling the Climate in Unheated Tomato Greenhouses and Predicting Botrytis Cinerea Infection. Ph.D. thesis, Evora University Portugal. Beers, G. 1983. Optimalisering van de teeltstrategie [in Dutch]. IMAG Report 101, Wageningen. Bot, G.P.A., J.J. van Dixhoorn and A.J. Udink ten Cate. 1978. Beheersing van de teelt in kassen met behulp van de computer [in Dutch]. Bedrijfsontwikkeling 9 (10): 729-731. Brooker, D. B. 1967. Mathematical model of the psychrometric chart. TRANSACTIONS of the ASAE 10(4):558-560, 563. Bryson, A.E. and Y.C. Ho. 1975. Applied optimal control. Hemisphere, New York. Challa, H. 1985. Report of the working party 'Crop growth models'. Acta Horticulturae 174: 169-174. Challa, H., G.P.A. Bot, E.M. Nederhoff and N.J. van de Braak. 1988. Greenhouse climate control in the nineties. Acta Horticulturae 230: 459-470. Challa, H. and G. van Straten. 1991. Reflections about optimal climate control in greenhouse cultivation. In: Hashimoto, Y. and W. Day (eds.). Mathematical and control applications in agriculture and horticulture. IFAC Workshop Series 1: 13-18. Challa, H. and G. van Straten. 1993. Optimal diurnal climate control in greenhouses as related to greenhouse management and crop requirements. In: Hashimoto, Y., G.P.A. Bot, W. Day. Courtin, P. and J. Rootenberg. 1971. Performance index sensitivity of optimal control systems. IEEE Transactions on Automatic Control AC-16: 275-277. Critten, D.L. 1991. Optimization of C02 concentration in greenhouses: A modelling analysis for the lettuce crop. Journal of Agricultural Engineering Research 48: 261-271. Courtin, P., and J. Roottenderg. 1971. Performance index sensitivity of optimal control systems. IEEE Transactions on Automatic Control AC-16: 275-277. Evers, A.H. 1979. Sensitivity analysis of optimal control problems, PhD diss., Technical University, Enschede, The Netherlands. Evers, A.H. 1980. Sensitivity analysis in dynamic optimization. Journal of Optimization Theory and Applications 32: 17–37. Garcia, J. L., De la Plaza, S., Navas, L. M., Benavente, R. M., Luna, L. 1998. Evaluation of the feasibility of alternative energy sources for greenhouse heating. Journal of Agricultural Engineering Research 69: 107-114. Gieling, Th. H. 2001. Control of water supply and specific nutrient application in closed growing systems. PhD Thesis, Wageningen University, Wageningen, The Netherlands. Goudriaan, J. 1977. Crop meteorology: a simulation study. Pudoc, Wageningen. Goudriaan, J., H.H. van Laar, H. van Keulen and W. Louwerse. 1985. Photosynthesis, CO2 and plant production. In: Day, W. and R.K. Atkin (eds. ). Wheat growth and modelling. NATO Asi Series, Series A, 86., Plenum Press, New York: 107-122. Goudriaan, J. and J.L. Monteith. 1990. A mathematical function for crop growth based on light interception and leaf area expansion. Annals of Botany 66: 695-701. Hemming, S., D. Waaijenberg, J. B. Campen, Impron en G. P. A. Bot. 2004. Development of a greenhouse system for tropical lowland in Indonesia. Paper and lecture International Symposium on greenhouses, environmental controls and in-house mechanization for crop production in the tropics and sub-tropics, Cameron Highlands, Malaysia, 15-17 June 2006, Acta Horticulturae 710: 135-142. Hwang, Y. 1993. Optimization of greenhouse temperature and carbon dioxide in subtropical climate. Ph.D. Thesis, University of Florida, Florida. Impron, Hemming S., Bot G P A. 2007. Effects of Cover Properties, Ventilation Rate and Crop Leaf Area on Tropical Greenhouse Climate. Accepted for publication in Biosystems Engineering. Kobayashi K and Salam M U. 2000. Comparing Simulated and Measured Values Using Mean Square Deviation and Its Components, Agronomy Journal 92(2):345-352. Keulen, H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth. In: Penning de Vries, F.W.T. and H.H. van Laar (eds.). Simulation of plant growth and crop production. Pudoc, Wageningen. Kirk, D.E. 1970. Optimal Control Theory. Prentice-Hall, Englewood Cliffs, NJ, USA. Lewis, F.L. 1986. Optimal control. John Wiley and Sons, New York. Lentz, W. 1987. Bestimmung von Temperaturstrategien für Gewächshauskulturen mittels bio-ökonomischer Modelle und Numerischer Suchverfahren [in German]. Ph.D. Thesis, University of Hannover, Hannover. Lorenz, H.P. and H.J. Wiebe. 1980. Effect of temperature on photosynthesis of lettuce adapted to different light and temperature conditions. Scientia Horticulturae 13: 115-123. Markert, A. 1990. Aggregation pflanzenphysiologischer Wachstumsmodelle und Berechnung von Steuerstrategien für das Gewächshausinnenklima mittels Verfahren der nichtlinearen Optimierung [in German]. Ph.D. Thesis, Technische Hochschule, Ilmenau. Penning de Vries, F.W.T., A.H.M. Brunsting and H.H. van Laar. 1974. Products, requirements and efficiency of biosynthesis: a quantitative approach. Journal of Theoretical Biology 45: 339-377. Peter R. Hicklenton. 1988. CO2 Enrichment in the Greenhouse: Principles and Practice. Timber Press. Pierre, D.A. 1969. Optimization theory with applications. John Wiley and sons, New York. Pontryagin L. S., B.V.G., Gammkrelidze R. V. 1962. The Mathematical Theory of Optimal Processes. John Wiley and Sons, New York. Pontryagin L. S., B.V.G., Gammkrelidze R. V. 1962. The Mathematical Theory of Optimal Processes. John Wiley and Sons, New York. Reinisch, K., E. Arnold, A. Markert and H. Puta. 1989. Development of strategies for temperature and CO2 control in the greenhouse production of cucumbers and tomatoes based on model building and optimization. Acta Horticulturae 260: 67-75. Ross, I.M., and F. Fahroo. 2004. Pseudospectral knotting methods for solving optimal control problems. Journal of Guidance, Control, and Dynamics 27: 3. Rutquist, P.E., and M.M. Edvall. 2009. Lightning fast solutions to your optimal control problems! Tomlab PROPT Users Guide, November 25, 2009. Sage, A.P., and C.C. White. 1977. Optimum systems control. Prentice Hall, Englewood Cliffs, New Jersey. Schmidt, M., K. Reinisch, H. Puta and A. Markert. 1987. Determining climate strategies for greenhouse cucumber production by means of optimization. In: Preprints 10th IFAC World Congress, Munich, Germany: 350-355. Seginer, I., G. Angel, S. Gal and D. Kantz. 1986. Optimal CO2 enrichment strategy for greenhouses: a simulation study. Journal of Agricultural Engineering Research 34: 285-304. Seginer, I. 1989. Optimal greenhouse production under economic constraints. Agricultural Systems 29: 67-80. Seginer, I. 1991. Optimal greenhouse temperature trajectories for a multi-state-variable tomato model. In: Hashimoto, Y. and W. Day (eds. ). Mathematical and control applications in agriculture and horticulture. IFAC Workshop Series 1: 73-79. Shina, G. and I. Seginer. 1989. Optimal management of tomato growth in greenhouses. Acta Horticulturae 248: 307-313. Stanghellini, C. 1987. Transpiration of greenhouse crops, Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands. Speetjens, B., S., Hemming, D., Wang, J. R., Tsay. 2012. Design of a vegetable greenhouse system for subtropical conditions in Taiwan. Wageningen UR Greenhouse Horticulture, Wageningen, The Netherlands. Spitters, C.J.T, H.A.J.M. Toussaint and J. Goudriaan. 1986. Separating the diffuse and direct component of global radiation and its implications for modelling canopy photosynthesis. Part I. Components of incoming radiation. Agricultural and Forest Meteorology, 38: 217-229.Sweeney, D.G., D.W. Hand, G. Slack abd J. H. M. Thornley, 1981. Modelling the growth of winter lettuce. In Rose, D.A. and D.A. Tantau, H.J. 1991. Optimal control for plant production in greenhouses. In: Hashimoto, Y. and W. Day (eds.). Mathematical and control applications in agriculture and horticulture. IFAC Workshop Series 1: 1-6. Tantau, H.J. 1993. Optimal control for plant production in greenhouses. In: Hashimoto, Y., G.P.A. Bot, W. Day and H.J. Tantau and H. Nonami (eds.). The computerized greenhouse. Automatic control application in plant production. Academic Press, New York: 139-152. Tap, R.F., L. G. Van Willigenburg, and G. Van Straten. 1996. Experimental results of receding horizon optimal control of greenhouse climate. Acta Horticulturae 406: 229-238. Tap, R.F. 2000. Economics-based optimal control of greenhouse tomato crop production, Wageningen Agricultural University, Wageningen, The Netherlands. Tchamitchan, M., L.G. van Willigenburg and G. van Straten. 1992. Short term dynamic optimal control of greenhouse climate. MRS Report 29-3, Wageningen Agricultural University, Wageningen. Udink ten Cate, A.J., G.P.A. Bot, and J.J. Dixhoorn. 1978. Computer control of greenhouse climates. Acta Horticulturae 87: 265–272. Udink ten Cate, A.J. 1985. Modeling and simulation in greenhouse climate control. Acta Horticulturae. 174:461-467. Van Henten, E.J., and J. Bontsema. 1991. Optimal control of greenhouse climate. In Mathematical and Control Applications in Agriculture, ed. Y. Hashimoto and W. Day, 1: 27–32. IFAC Workshop Series. Van Henten, E.J. 1994. Greenhouse climate management: an optimal control approach, Ph.D. thesis, Wageningen Agricultural University, Wageningen, The Netherlands. Van Henten, E.J. 1994.Validation of a Dynamic Lettuce Growth Model for Greenhouse Climate Control. Agricultural System 45:55-72. Van Henten, E.J., and J. Bontsema. 2009. Time scale decomposition of an optimal control problem in greenhouse climate management. Control Engineering Practice 17: 88-96. Van Henten, E.J., and J. Bontsema. 2009. Time scale decomposition of an optimal control problem in greenhouse climate management. Control Engineering Practice 17: 88-96. Van Heurn E., K. Van der Post. 2004. Protected cultivation construction, requirements and use of greenhouses in various climates. Agromisa Foundation, Wageningen. Von Elsner, B., Briassoulis, D., Waaijenberg, D., Mistriotis, A., Von Zabeltitz, Chr., Gratraud, J., Russo, G., Suay-Cortes, R. 2000a. Review of structural and functional characteristics of greenhouses in European union countries: Part I, Design requirements. Journal of Agricultural Engineering Research 75: 1-16. Von Elsner, B., Briassoulis, D., Waaijenberg, D., Mistriotis, A., Von Zabeltitz, Chr., Gratraud, J., Russo, G., Suay-Cortes, R. 2000b. Review of structural and functional characteristics of greenhouses in European union countries: Part II, Typical designs. Journal of Agricultural Engineering Research 75: 111-126. Zaragoza, G., M. Buchholz, P. Jochum, and J. Perez-Parra. 2007. Watergy project: Towards a rational use of water in greenhouse agriculture and sustainable architecture. Desalination 211: 296-303.
摘要: 近年來台灣已陸續建造許多溫室來栽培作物。由於地處亞熱帶,高溫及潮濕的氣候對溫室環控形成更嚴苛的挑戰。特別是夏季的高溫,更是影響亞熱帶溫室作物能否周年生產的關鍵。為了降低環境控制的成本及栽培需求,亞熱帶溫室需著重於降溫的規劃與設計。溫室降溫常見技術包括通風、蒸發冷卻(風扇水牆或噴霧)和遮蔭。藉由適當的環境控制,可在溫室中創造更好的微氣候,從而改善作物生長條件。然而環境控制須要透過環控設備進行調節,因此也衍生出能源耗用的問題,而能源過度消耗向來是室溫最為人所詬病的議題。因此,無論國內、外對溫室環境控制的研究從不間斷,並持續受到關注。近年來有許多國外溫室環境控制系統被引進台灣,然而,由於這些地區與台灣的氣候環境有極大差異,致使這些系統在台灣無法發揮其預期的功效,對經濟效益的提升並無太大的助益。透過數學模型對溫室在不同氣候條件下進行模擬,進而找到最佳的設計方案已成為研究溫室環境控制的趨勢。這個方法一般需先建立動態模型,精準模擬溫室的各種狀態。本研究以亞熱帶氣候條件,建立了一個包含植株乾物重、CO2濃度、溫度及濕度等狀態的動態模型。透過歷史氣候資料及控制軌跡配合作物生長模型進行模擬,模擬結果與實測值相當接近。台灣的設施農業正在蓬勃發展,大量資金不斷投入於溫室的建造及效能的提升,以環境控制技術改善環境逆境的意識逐漸受到重視。但過多環境控制的投入對經濟效益可能有負面的影響,因此藉由權衡控制支出與收益才能獲得最大的經濟效益,這是一個典型最佳化控制的問題。本研究以溫室生產萵苣的最大化淨收益作為主要評估的性能指標。利用作物生長模型、歷史氣候數據,應用最佳化控制理論來推算最佳化控制策略,並與現有的環境控制策略進行比較。本研究推導的控制策略可以使萵苣生產的淨收益增加約8%。
In recent years, many greenhouses have been built in Taiwan to cultivate crops. In subtropical areas, controlling temperature and humidity in a greenhouse is very challenging. In particular, the temperature in summer has a crucial effect on annual crop production. To reduce the cost of environmental control, ventilation and cooling must be designed carefully in greenhouses. Common techniques for greenhouse cooling include ventilation, evaporative cooling (fan and pad or fogging), and shading. Through suitable environmental control, a better microclimate can be achieved in the greenhouse, thereby improving the crop growth conditions. However, this can lead to excessive energy consumption; this is a major issue in greenhouses. Therefore, environmental control in greenhouses has continually attracted considerable research attention. In recent years, many foreign environmental control systems have been introduced to Taiwan. However, the differences in climate and environment between these regions and Taiwan, these systems did not perform well as expected, and the promotion of economic benefits is limited. Through the mathematical model of the greenhouse under different climatic conditions of simulation, and then developing the best design has become the trend of research greenhouse environment control. This method requires the establishment of a dynamic model to accurately simulate various states of the greenhouse. In this study, a dynamic model containing plant dry matter weight, CO2 concentration, temperature and humidity was established based on subtropical climatic conditions. Through historical climate data and control trajectory with the crop growth model for simulation, the simulation results and the measured values are very close. Taiwan's agricultural facilities are booming and a large amount of money is invested in the construction of greenhouses, using environment control technology to improve the environment and adversity has gradually been received more attention. However, too much investment in environmental control may cause a negative impact on economic benefits. Therefore, the greatest economic benefit can be obtained by controlling expenditure and benefits; this is a typical optimization control problem. In this study, the maximum net income from lettuce production in greenhouse was defined as the main performance index. By using a climate and crop growth model based on historical climate data, we applied the theory of optimal control to estimate the best control strategy. A comparison was performed with an existing environmental control strategy. The results showed that the proposed control strategy could increase the net income of lettuce production by approximately 8%.
URI: http://hdl.handle.net/11455/96435
文章公開時間: 10000-01-01
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.