Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96445
DC FieldValueLanguage
dc.contributor盛中德zh_TW
dc.contributorChung -Teh Shengen_US
dc.contributor.author林長彥zh_TW
dc.contributor.authorChang-Yan Linen_US
dc.contributor.other生物產業機電工程學系所zh_TW
dc.date2017zh_TW
dc.date.accessioned2019-01-17T07:48:27Z-
dc.identifier.citation1. 經濟部能源局。1998。能源政策白皮書。(報告編號:008782870176) 台北:經濟部能源委員會 2. 曾益民。2007。生質酒精汽油之發展。綠色能源與材料。綠色能源專輯。p26。 3. 林忠亮、徐茂園、陳清、方炳勳、黃東梨。2007。甘藷澱粉試量產生質酒精開發。石油季刊。p65-74。 4. 陳文恆、郭加倫、黃文松、王嘉寶。2007。纖維酒精技術之發展。農業生技產業季刊。植物種苗生技。p62-69。 5. 趙國評、邱文。2007。淺談生質酒精。林業研究專訊Vol.14 No.3。 6. 謝伯祥。2009。以濕氧爆碎前處理法提升稻殼醣化效率的研究。碩士論文。台北:國立台北科技大學有機高分子研究所。 7. 戴上凱、林畢修平、劉仲康。2004。熱穩定性纖維素分解酵素。生物科學第四十七卷 第一期。p35-47。 8. 郭家宏。2009。纖維素之溶解對其酵素糖化及發酵之研究。博士論文。台北:國立台灣科技大學化學工程研究所。 9. 趙婉宇。2003。以氫氟酸搭配鹼性過氧化浸泡前處理法提升稻殼產醣效率之研究。碩士論文。新竹:國立交通大學環境工程所研究所。 10. Bisaria, V.S. and Ghosh, T.K.1981.Biodegradation of cellulostic material: substrates microorganism.enzymes and products.Enzyme Microb.Techol.vol:90-104. 11. Cosgrove, D. J.1998. Cell Walls :Structures. Biogenesis, and Expansion Increasing Cellulose Hydrolysis. Biotechnology and Bioengineering:31-43. 12. Dadi,A.P.,Varanasi,S.,Schall,C.A.2006.Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnology and Bioengineering,95:904-910. 13. Duff, S. J. B. and W. D. Murray.1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol : A review .Bioresource Technology 55:1-33. 14. Fan, L. T., M. Gharpuray and Y. H. Lee. 1987. Cellulose hydrolysis Biotechnology Monographs, p.57. Sprunger,Beriln.. 15. Mansfied,S.D.,Mooney,C.,Saddler,J.N. 1999.Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress,15:804-816. 16. Millett, M. A., M. J. Effland.,D. P. Caulfield.1979 .Influence of fine grinding on the hydrolysis of cellulosic materials-acid versus enzymatic. Advances. 17. Mais,U.,Esteghlalian,A.R.,Saddler,J.N.,Mansfield,S.D.,2002.Enhancing the Enzymatic Hydrolysis of Cellulosic Materials Using Simultaneous Ball Milling'Applid Biochemistry and Biotechnology, Vols 98-100,:815-832. 18. Mok, W.S.L and M.J.Antal.1994.Biomass fraction by hot compressed liquid water.,:1572-1582, In A. V. Bridgewater ,ed. Advances in Thermochemicel Biomass Conversion. Blackie Academic & Peofessional: New York. 19. Mosier,N.S.,Ladisch,C.M.,Ladisch,M.R.,2002.Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnology and Bioengineering,79,:610-618 20. Sharma, S. K,.K. L. Kalra,.H. S. Grewal. 2002a Enzymatic saccharification of Pretreated sunflower stalks . Biomass & Bioenergy23:237-243. 21. Sharma, S. K,.K. L. Kalra:H. S. Grewal. 2002b. Fermentation of enzymatically saccharified sunflower stalks for ethanol production and its scale up.Bioresource Technology 85:31-33. 22. Yeh, A.-I., Y.-C. Huang, and S. H. Chen. 2010. Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydrate Polymers 79(1):192-199. 23. Zhang,P.Y-H.,Himmel,M.E.,Mielenz,J.R.,2006.Outlook for cellulose improvement :Screening and selection strategies Biotechnology Advances,Vol.24,:452-481. 24. Zhang,Y.H.P.,Lynd,L.R.,2004.Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulose systems. Biotechnology and Bioengineering,88,:797-824.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/96445-
dc.description.abstract本研究以玉米為原料,探討利用酵素水解,於不同平均粒徑大小(0.20824mm、0.12364mm、0.08772mm及0.05232mm)與不同固液比(1:8及1:10)PH值在4.3~4.5、溫度50~52℃及連續攪拌等條件下進行酵素水解醣化。研究結果觀察到粒徑大小大於0.149mm只需觀察6小時,粒徑大小小於0.149mm只需要觀察26小時即可得到最終濃度,可有效利用實驗時間。當平均粒徑大小研磨到0.05232mm其醣化轉糖率高達75%及最終糖濃度皆為最佳。表顆粒小可將纖維素結晶破壞較為明顯,使醣化效果較佳,其中平均粒徑大小在0.05232mm時,醣化1小時以內時糖濃度上升更為明顯, 效率為每5分鐘上升糖濃度約0.11%,在5分鐘內平均每30秒上升糖濃度0.12%。 由不同固液比發現1:8最終濃度皆高於1:10,經計算轉糖率清楚了解糖化固液比1:10比1:8更能將纖維素及半纖維轉換成糖,轉糖率並高出1.8% ~3.1%。此值由統計分析為不顯著影響。由上述實驗固液比會增加糖濃度,但糖化效率比例及轉糖率以1:10為較佳。 本研究建立糖濃度在粒徑大小小於0.149mm之方程式與結果有良好的相關性,其決定係數R2為0.93;0.05232mm平均粒徑大小探討完整的醣化過程與方程式,其決定系數R2為0.896。未來可提供相關實驗進行酵素水解研究之評估。zh_TW
dc.description.abstractThis study examined the efficiency of enzymatic hydrolysis transformation by different particle sizes and different ratio of the corn stover powder to the citric acid liquid (solid-liquid ratio). There are four particle mean sizes: 0.20824mm, 0.12364mm, 0.08772mm, and 0.05232mm; and two solid-liquid ratio: 1:8 and 1:10. The process of enzymatic hydrolysis and saccharification was processed in the condition of ph4.3-4.5, temperature of 50-52℃ and countinuous stirring. The particle mean size of 0.05232mm had the better result.The saccharification transformation is up to 75% and the final concentration is the highest. Moreover, the sugar concentration during saccharification in first hour increased significantly. In the first hour, the study observed the sugar concentration increasing about 0.12% every 30 seconds in the first 5 minutes, and after 5 minutes, it increased 0.11% every 5 minutes untill the first hour. Furthermore, the minimum experimental time is only 6 hours for the particle mean sizes larger than 0.149mm and 26 hours for the sizes smaller than 0.149mm. For the different solid-liquid ratio, the result showed the sugar conversion rate of the solid-liquid ratio 1:10 is higher than the ratio 1:8, although the final sugar concentration of the solid-liquid ratio 1:8 is higher than the ratio 1:10. In other words, the solid-liquid ratio 1:10 transformed cellulose and hemicellulose to sugar more efficiently. Above all, this study has simulated the enzymatic hydrolysis transformation of corn stover for particle mean size 0.149mm and 0.05232mm, and the R2 are 0.93 and 0.896 respectively. Both of the simulated equations are highly correlation. The simulated mathematics model can be applied to describe enzymatic hydrolysis transformation.en_US
dc.description.tableofcontents謝誌 i 摘要 ii Abstract iv 圖目錄 x 表目錄 xii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻探討 3 2.1木質纖維素介紹 3 2.2生質乙醇製程 6 2.2.1稀酸水解製程 6 2.2.2濃酸水解製程 7 2.2.3酵素水解製程 7 2.3 酵素 9 2.3.1纖維酵素水解特性 9 2.3.2酵素水解影響因子 10 2.3.3酵素活性 12 2.3.4酵素水解相關研究 13 2.4纖維素顆粒度大小 16 2.5前處理 16 2.5.1機器粉碎 16 2.5.2裂解 17 2.5.3高壓熱水處理法 17 2.5.4稀釋酸處理法 17 2.5.5蒸氣爆裂理法 18 2.6醱酵 18 第三章 研究與方法 19 3.1 研究流程 19 3.2 實驗材料與設備 19 3.2.1實驗材料 19 3.2.2實驗設備 20 3.3 實驗方法 25 第四章 結果與討論 30 4.1 平均顆粒度 30 4.2不同平均粒徑大小醣化結果 31 4.2.1平均粒徑0.20824mm之醣化結果 34 4.2.2平均粒徑0.12364mm之醣化結果 35 4.2.3平均粒徑0.08772mm之醣化結果 36 4.2.4平均粒徑0.05232mm之醣化結果 38 4.2.5實驗準確性分析 39 4.2.6不同顆粒醣化小結 43 4.3 不同固體及液體比率醣化結果 45 4.3.1平均粒徑0.20824mm不同固液比之醣化結果 47 4.3.2平均粒徑0.12364mm不同固液之醣化結果 48 4.3.3平均粒徑0.08772mm不同固液比之醣化結果 49 4.3.4平均粒徑0.05232mm不同固液比之醣化結果 50 4.3.5不同固液比計算糖化效率 52 4.4 纖維素轉糖率 54 4.5 平均粒徑0.05232mm醣化一小時 56 4.6平均粒徑0.05232mm醣化五分鐘 58 4.7 迴歸方程式結果分析 60 4.7.1 不同顆粒度及不同固液比酵素水解方程式 61 4.7.2 粒徑小於0.149mm趨勢方程式 66 4.7.3平均粒徑0.05232mm整趨勢方程式 68 第五章 結論與建議 70 5.1 結論 70 5.2 建議 72 參考文獻 73zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2020-08-28起公開。zh_TW
dc.subject玉米稈zh_TW
dc.subject酵素水解zh_TW
dc.subject顆粒粒徑zh_TW
dc.subjectCorn stoveren_US
dc.subjectEnzymatic hydrolysis transformationen_US
dc.subjectParticle sizeen_US
dc.title玉米稈顆粒大小對纖維酵素水解之研究zh_TW
dc.titleStudy on the Influence of Particle Size on Enzymatic Hydrolysis of Corn Stalken_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2020-08-28zh_TW
dc.date.openaccess2020-08-28-
Appears in Collections:生物產業機電工程學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.