Please use this identifier to cite or link to this item:
標題: 亞熱帶設施環境之番茄蒸散估計式
The Study of the Tomato Transpiration Model on Subtropical Protected Culture
作者: 陳俊源
Jiun-Yuan Chen
關鍵字: 亞熱帶設施生產
Subtropical Protected culture
Transpiration estimates
Boundary layer resistance
Wind speed
引用: 1. 柯勇。2016。植物生理學。第二版。藝軒。台北市。 2. 陳加忠。1999。溫室內盆栽花卉蒸散量之研究。中華農業氣象6(4):159-17。 3. 黃郁升。2009。溫室火鶴花蒸發散之研究-量測系統之建立與模式驗證。國立中興大學生物產業機電工程學系碩士論文。台中市。 4. Aasamaa, Krõõt and Anu Sõber. 2011. Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species. Environmental and Experimental Botany 71(1): 72-78. 5. Allen, Richard G., Luis S. Pereira, Dirk Raes, and Martin Smith. 2006. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome, Italy: United Nations FAO. 6. Aphalo, P. J. and P. G. Jarvis. 1991. Do stomata respond to relative humidity?. Plant, Cell & Environment 14: 127–132. 7. ASHRAE. 2013. ASHRAE Handbook: Fundamentals; ASHRAE: Atlanta, GA, USA. 8. Asner, G. P., J. M. O. Scurlock and J. A. Hicke. 2003. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology and Biogeography 12: 191–205. 9. Baille, M., A. Baille and D. Delmon. 1994. Microclimate and transpiration of greenhouse rose crops. Agricultural and Forest Meteorology. 71:83-97. 10. Bakker, J.C.. 1991. Leaf conductance of four glasshouse vegetable crops as affected by air humidity. Agric. For. Meteorol. 55: 23-36. 11. Baptista, F.J., B.J. Bailey and J.F. Meneses. 2005. Measuring and modelling transpiration versus evapotranspiration of a tomato crop grown on soil in a mediterranean greenhouse. Acta Hortic. 691: 313-320. 12. Barclay, H.J. 1998. Conversion of total leaf area to projected leaf area in lodgepole pine and Douglas-fir. Tree Physiology 18: 185–193. 13. Bauer, Hubert, Peter Ache, Silke Lautner, Joerg Fromm, Wolfram Hartung, Khaled A.S. Al-Rasheid, Sophia Sonnewald, Uwe Sonnewald, Susanne Kneitz, Nicole Lachmann, Ralf R. Mendel, Florian Bittner, Alistair M. Hetherington and Rainer Hedrich. 2013. The Stomatal Response to reduced relative humidity requires guard cell-autonomous ABA synthesis, Current Biology 23(1) : 53-57. 14. Boulard, T., A. Baille, M. Mermier, F. Villette. 1991. Mesures et modelisation de la résistance stomatique foliaire et de la transpiration d'un couvert de tomate de serre. Agronomie 11: 259–274. 15. Boulard, Thierry, Marie Mermier, Jacques Fargues, Nathalie Smits, Marc Rougier, Jean Claude Roy. 2002. Tomato leaf boundary layer climate: implications for microbiological whitefly control in greenhouses. Agricultural and Forest Meteorology 110(3): 159-176. 16. Campbell, G.S. 1986. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agric. For. Meteorol. 36: 317-21. 17. Chai, T. and R. R. Draxler. 2014. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci. Model Dev., 7, 1247-1250. 18. Chen, Chiachung. 2015. The effect of the sensor performance on the uncertainty analysis of evapotranspiration model. In Greensys 2015 - International Symposium on New Technologies and Management for Greenhouses. ISHS : Evora. 19. Chen, J. 1984. Mathematical Analysis and Simulation of Crop Micrometeorology. PhD Thesis. Agricultural University, Wageningen. 20. Chen, Ling-His, Jiun-Yuan Chen and Chia-Chung Chen. 2014. Analysis the effect of vapor pressure deficit and solar radiation to evapotranspiration of tomato. In Proceedings of the 7th International Symposium on Machinery and Mechatronics for Agriculture and Biosystems Engineering (ISMAB) . Yilan, Taiwan. 21. Damour, G., T. Simonneau, H. Cochard and L. Urban. 2010. An overview of models of stomatal conductance at the leaf level. Plant, Cell & Environment 33(9): 1419-1438. 22. De Gelder, A., J. A. Dieleman, G.P.A. Bot and L. F. M. Marcelis. 2012. An overview of climate and crop yield in closed greenhouses. The Journal of Horticultural Science and Biotechnology 87:3, 193-202. 23. Fazlil Ilahi, Wan Fazilah. 2009. Evapotranspiration models in greenhouse. Irrigation and Water Engineering Group. Wageningen University. 24. Fleming, R.J. 1998. A note on temperature and relative humidity corrections for humidity sensors. J. Atmos. Ocean. Technol. 15: 1511–1515. 25. Fuchs, M., E. Dayan, D. Shmuel, I. Zipori. 1997. Effects of ventilation on the energy balance of a greenhouse with bare soil. Agricultural and Forest Meteorology 86: 273-282. 26. Goudriaan, J. 1988. The bare bones of leaf-angle distribution in radiation models for canopy photosynthesis and energy exchange. Agricultural and Forest Meteorology 43( 2): 155-169. 27. Heuvelink, E. 2005. Tomato. Crop production science in horticulture no. 13. Wallingford, UK: CAB International. 28. Hopkins, William G., Norman P. A. Hüner. 2009. Introduction to plant physiology. 4th ed. NJ: Wiley. 29. Jarvis, P.G.. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond. Ser. B 273, 593–610. 30. Jolliet, O. 1994. HORTITRANS, a Model for predicting and optimizing humidity and transpiration in greenhouses. Journal of Agricultural Engineering Research 57(1): 23-37. 31. Jolliet, O. and B.J. Bailey. 1992. The effect of climate on tomato transpiration in greenhouses: measurements and models comparison. Agricultural and Forest Meteorology 58:43-62. 32. Jones, H. 2013. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Cambridge: Cambridge University Press. 33. Katsoulas, Nikolaos and Constantinos Kittas. 2011. Greenhouse crop transpiration modelling. In:'Evapotranspiration - from measurements to agricultural and environmental applications'. 311-328. eds. Giacomo Gerosa. InTech. Croatia. 34. Lange, O.L., R. Lösch, E.D. Schulze and L. Kappen. 1971. Response of stomata to changes in humidity. Planta, Berlin, 100: 76-86. 35. Lösch, R. and J.D. Tenhunen. 1981. Stomatal response to humidity - phenomenon and mechanism. In: 'Stomatal Physiology'. 137-161. eds. P.G. Jarvis and T.A. Mansfield. Cambridge University Press, Cambridge. 36. Milthorpe, F.L. 1962. Plant factors involved in transpiration. In 'Plant-Water Relationships in Arid and Semi-Arid Conditions.' Arid Zone Research 16: 107-115. UNESCO, Paris. 37. Monteith, J. L. 1965. Evaporation and the Environment in the State and Movement of Water in Living Organisms. Proceedings of the Society for Experimental Biology, Symposium No. 19, Cambridge: Cambridge University Press. pp. 205-234. 38. Monteith, John L. and Mike H. Unsworth. 2013. Principles of Environmental Physics. 4th ed. Academic Press. 39. Morris, L. G., F. E. Neale, J. D. Postlethwaite, 1957. The transpiration of glasshouse crops and its relationship to the incoming solar radiation. Journal of Agricultural Engineering Research, 2(2): 111-122. 40. Mott, K. A. and D. Peak. 2010. Stomatal responses to humidity and temperature in darkness. Plant, Cell & Environment 33: 1084–1090. 41. Myers, Raymond H. 2000. Classical and Modern Regression with Applications. 2th ed. Pacific Grove, CA: Duxbury. 42. Möller, Markus, Josef Tanny, Yan Li and Shabtai Cohen. 2004. Measuring and predicting evapotranspiration in an insect-proof screenhouse. Agricultural and Forest Meteorology 127(1): 35-51. 43. Norman, J. M., and P. G. Jarvis. 1975. Photosynthesis in Sitka Spruce (Picea Sitchensis (Bong.) CARR.): V. Radiation Penetration Theory and a Test Case. Journal of Applied Ecology 12(3): 839–878. 44. Okamoto M., Y. Tanaka, S.R. Abrams, Y. Kamiya, M. Seki and E. Nambara. 2009. High humidity induces abscisic acid 8'-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. Plant Physiol. 149: 825-834. 45. Pallás-Areny, Ramón and John G. Webster. 2001. Sensors and Signal Conditioning. John Wiley & Sons: New York, NY, USA, 2001. 46. Prenger, J. J., R. P. Fynn, R. C. Hansen. 2002. A comparison of four evapotranspiration models in a greenhouse environment.Transactions of the ASAE. Vol. 45(6): 1779–1788. 47. Rana, G. and N. Katerji. 2000. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. European Journal of Agronomy 13:125-153. 48. Seginer, I. 2002. The Penman-Monteith evapotranspiration equation as an element in greenhouse ventilation design. Biosystems Engineering 82:423-439. 49. Stanghellini, C. 1987. Transpiration of greenhouse crops: an aid to climate management. PhD Thesis, Instituut voor Mechanisatie, Arbeid en Gebouwen, Wageningen. 50. Van der Post, C. J., J. J. van Schie and R. de Graaf. 1974. Energy balance and water supply in glasshouses in the West-Netherlands. Acta Horticulturae 35: 13-22. 51. Villarreal-Guerrero, F., M. Kacira, E. Fitz-Rodríguez, C. Kubota, G.A. Giacomelli, R. Linker and A. Arbel. 2012. Comparison of three evapotranspiration models for a greenhouse cooling strategy with natural ventilation and variable high pressure fogging, Scientia Horticulturae 134: 210-221. 52. Willmott, Cort J., Kenji Matsuura. 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research. 30: 79-82. 53. Yang, X., T.H. Short, R.D. Fox and W.L. Bauerle. 1990. Transpiration, leaf temperature and stomatal resistance of a greenhouse cucumber crop. Agricultural and Forest Meteorology 51:197-209.
摘要: 臺灣位於亞熱帶地區氣候變化極大,為了能夠穩定生產,設施栽培通常是農民採用的解決方法。在亞熱帶設施生產中,如何減少水資源消耗,但又必須提供足夠之水源使作物能夠順利生長,作物蒸散量估計將是重要之關鍵。鑑於目前大多數之蒸散估計式皆是建立在緯度較高之國家,因此將這些估計式應用於亞熱帶設施生產之可行性必須評估。本研究以一葉面邊界層量測裝置所量測得到之溫度與相對濕度,以迴歸分析求得風速與番茄盆栽蒸散量之關係,再以設施栽種之實際數據代入建立番茄蒸散邊界層阻抗之估計式。接下來以Stanghellini蒸散估計式為基礎,將實際栽種於亞熱帶設施中之番茄實驗數據代入驗證,並針對估計誤差較大之情況加以修正,以期能準確估計番茄之蒸散量。研究結果顯示,在高風速且高VPD之環境下Stanghellini蒸散估計式需要修正,而經過邊界層阻抗與氣孔阻抗修正後,Stanghellini蒸散估計式之誤差有顯著之改善。
Locating in subtropical region, Taiwan's climate is varied severely. For the stable production, protected culture is usually a selection method for farmers. Transpiration estimation of crops play an important role for reducing water consuming and suppling adequate amount of water for crops in subtropical protected culture. Most transpiration estimation studies are conducted in northern country, the feasibility of these transpiration estimates need to be assessed as they were applied in subtropical region. In this study, a leaf boundary layer measurement device was set up to measure the wind speed, the amount of transpiration of a potted tomato, the temperature and relative humidity around the leaves. Then the relation of wind speed and the mount of transpiration of a potted tomato was derived with regression analysis. The data of subtropical protected cultured tomato was introduced to the above regression results. The estimator of the boundary layer resistance in subtropical protected cultured tomato was conducted. The Stanghellini model was evaluated with these data, the less accuracy part which occurred at high wind speed and high VPD situation was improved. Then modified model was verified with independent tomato culture data. With the adjustments of the boundary layer resistance and stomatal resistance for the Stanghellini model, the accuracy of the tomato transpiration rate was increased significantly.
文章公開時間: 10000-01-01
Appears in Collections:生物產業機電工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.