Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96449
標題: 細胞呼吸活性自動化量測系統的發展
Development of an automatic system for measuring cellular respiratory activity
作者: 王玠荏
Chieh-Jen Wang
關鍵字: 氧氣耗氧率
細胞呼吸活性
微流體細胞晶片
電化學檢測
oxygen consumption rate
cellular respiratory activity
microfluidic cell chip
electrochemical detection
引用: 袁佳吟,吳靖宙,結合圖樣化細胞培養之溶氧電極陣列晶片於細胞呼吸活性的評估,國立中興大學生物產業機電工程研究所碩士論文,2009 Al-Jasmi F., Penefsky H. S. and Souid A. K., The phosphorescence oxygen analyzer as a screening tool for disorders with impaired lymphocyte bioenergetics, Molecular Genetics and Metabolism, 104:529–536, 2014 Bard A. J. and Faulkner L. R., Electrochemical Methods: Fundamentals and Application (2nd ed.), the United States of America, John Wiley and Sons, Inc, 2001 Bugge A., Dib L. and Collins S., Measuring Respiratory Activity of Adipocytes and Adipose Tissues in Real Time, Methods Enzymol, 538:233–247, 2014 Clark Jr L. C. and Lyons C., Electrode system for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of Sciences, 102:29–45, 1962 Chen L., Yang X., Liu R., Liu L., Zhao D., Liu J., Guo Y. and Long J., Thinned young apple polysaccharide improves hepatic metabolic disorder in high-fat diet-induced obese mice by activating mitochondrial respiratory functions, Journal of Functional Foods, 33:396–407, 2017 Clara R., Langhans W. and Mansouri A., Oleic acid stimulates glucagon-like peptide-1 release from enteroendocrine cells by modulating cell respiration and glycolysis, Metabolism, 65:8–17, 2016 Du G., Fang Q. and den Toonder J. M. J., Microfluidics for cell-based high throughput screening platforms, Analytica Chimica Acta 903:36–50, 2016 Gao Y., Li P. and Pappas D., A microfluidic localized, multiple cell culture array using vacuum actuated cell seeding: integrated anticancer drug testing, Biomedical Microdevices, 15:907–915, 2013 Hirano Y., Kodama M., Shibuya M., Maki Y. and Komatsu Y., Analysis of beat fluctuations and oxygen consumption in cardiomyocytes by scanning electrochemical microscopy, Analytical Biochemistry, 447:39–42, 2014 Kubisch R., Bohrn U., Fleischer M. and Stütz E., Cell-based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments, Sensors, 12:3370–3393, 2012 Lafargue A., Degorre C., Corre I., Alves-Guerra M. C., Gaugler H. M., Vallette F., Pecqueur C. and Paris F., Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation, Free Radical Biology and Medicine, 108:750–759, 2017 Lambrechts D., Roeffaers M., Kerckhofs G., Roberts S. J., Hofkens J., Van de Putte T., Oosterwyck H. V. and Schrooten J., Fluorescent oxygen sensitive microbead incorporation for measuring oxygen tension in cell aggregates, Biomaterials, 34:922–929, 2013 Mitov M. I., Harris J. W., Alstott M. C., Zaytseva Y. Y., Mark Evers B. and Allan Butterfield D., Temperature induces significant changes in both glycolytic reserve and mitochondrial spare respiratory capacity in colorectal cancer cell lines, Experimental Cell Research, 354(2):112–121, 2017 Nebel M., Grtzke S., Diab N., Schulte A., and Schuhmann W., Visualization of Oxygen Consumption of Single Living Cells by Scanning Electrochemical Microscopy: The Influence of the Faradaic Tip Reaction, Angewandte Chemie, 52:6335–6338, 2013 Ohara T., Noma K. and Urano S., A novel synergistic effect of iron depletion on antiangiogenic cancer therapy, International Journal of Cancer, 132:2705–2713, 2013 Perozziello G., Catalano R., Francardi M., Rondanina E., Pardeo F., Angelis F. D., Malara N., Candeloro P., Morrone G. and Fabrizio E. D., A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells, Microelectronic Engineering, 111:314–319, 2013 Saghiri M. A., Asatourian A., Orangi J., Sorenson C. M. and Sheibani N. Functional role of inorganic trace elements in angiogenesis Part I: (N, Fe, Se, P, Au, and Ca), Oncology Hematology, 96:129–142, 2015 Shaban S., Marzouqi F., Al Mansouri A., Penefsky H. S. and Souid A. K., oxygen measurements via phosphorescence, Computer Methods and Programs in Biomedicine, 100:265–268, 2010 Shiku H., Shiraishi T., Aoyagi S., Utsumi Y., Matsudaira M., Abe H., Hoshi H., Kasai S., Ohya H. and Matsue T., Respiration activity of single bovine embryos entrapped in a cone-shaped microwell monitored by scanning electrochemical microscopy, Analytica Chimica Acta, 522:51–58, 2004 Staal M., Borisov S. M., Rickelt L. F., Klimant I. and Kühl M., Ultrabright planar optodes for luminescence life-time based microscopic imaging of O2 dynamics in biofilms, Journal of Microbiological Methods, 85:67–74, 2011 Takahashi R., Zhou Y., Horiguchi Y., Shiku H., Sonoda H., Itabashi N., Yamamoto J., Saito T., Matsue T. and Hisada1 A., Noninvasively measuring respiratory activity of rat primary hepatocyte spheroids by scanning electrochemical microscopy, Journal of Bioscience and Bioengineering, 117:113–121, 2014 Tanis R. M., Piroli G. G., Day S. D. and Frizzell N., The effect of glucose concentration and sodium phenylbutyrate treatment on mitochondrial bioenergetics and ER stress in 3T3-L1 adipocytes, Biochimica et Biophysica Acta, 1853:213–221, 2015 Wang J., Liu R., Wang F., Hong J., Li X., Chen M., Ke Y., Zhang X., Ma Q., Wang R., Shi J., Cui B., Gu W., Zhang Y., Zhang Z., Wang W., Xia X., Liu M. and Ning G., Ablation of LGR4 promotes energy expenditure by driving white-to-brown fat switch, Cell Biology, 15: 1455–1463, 2013 Weltin A., Slotwinski K., Kieninger J., Moser I., Jobst G., Wego M., Ehret R. and Urban G.-A., Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem, Lab on a Chip, 14:138–146, 2014 Winterbourn C. C., The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells, Biochimica et Biophysica Acta, 1840:730–738, 2014 Wu C. C., Yasukawa T., Shiku H., Matsue T., Fabrication of miniature Clark-oxygen sensor integrated with microstructure, Sensors and Actuators B-Chemical, 110:342-349, 2005 Wu C. C., Saito T., Yasukawa T., Shiku H., Abe H., Hoshi H. and Matsue T., Microfluidic chip integrated with amperometric detector array for in situ estimating oxygen consumption characteristics of single bovine embryos, Sensors and Actuators B, 125:680–687, 2007 Wu C. C., Luk H. N., Tsai Lin Y. T., Yuan C. Y., A Clark-type oxygen chip for in situ estimation of the respiratory activity of adhering cells, Talanta, 81:228–234, 2010 Wu C. C., Lin W. C. and Fu S. Y., The open container-used microfluidic chip using IrOx ultramicroelectrodes for the in situ measurement of extracellular acidification, Biosensors and Bioelectronics, 26:4191–4197, 2011 Yamanaka K., Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices, Japanese Journal of Applied Physics, 28:632–637, 1989 Ye N. N., Qin J. H., Shi W. W., Liu X. and Lin B. C., Cell-based high content screening using an integrated microfluidic device, Lab on a Chip, 7:1696–1704, 2007
摘要: 微流控細胞培養晶片在藥物或毒物快速檢測領域中,為引人注目的重要平台之一。本研究製作兩種微流體晶片,以圓盤超微電極(r: 20 μm)利用電化學法量測溶氧濃度,以評估細胞耗氧量與呼吸活性。配合手動樣本滴入與蠕動幫浦移除液體之第一型晶片,可在數小時內量測3T3-L1 細胞在glucose 、insulin 、oligomycin 、FCCP 與rotenone/antimycin A 刺激下的呼吸活性,並藉由半球型擴散模型可計算出3T3-L1 細胞在2.5 mM、5 mM、11 mM 及30 mM glucose 背景液下的耗氧率分別為13.07 ± 0.29 pmol/min、14.99 ± 0.57 pmol/min、17.57 ± 0.59 pmol/min 及21.35 ± 0.75 pmol/min。同時,在含11 mM glucose 之培養液中的聚多炔糖苷接收器(cytopiloyne receptor, CPR)-overexpressed (CPR-OVE) 3T3-L1 cells 的非粒線體呼吸量約為9.53 ± 0.37 pmol/min,而CPR-KD則最低,約為4.52 ± 2.04 pmol/min。第二型晶片則可結合電控閥門與微流道,進行自動換液,可對L929 細胞進行15 h 經時性呼吸活性監控,未來期望此系統可對藥物或基因療法在細胞代謝影響的快速評估方法上做出貢獻。
The microfluidic cell-cultured chip is one of the most important platforms for fast detecting the environmental toxicant and the drug screening. In the study, two types of microfluidic chips with disk ultromicroelectrodes were used to electrochemically detect the concentration of dissolved oxygen (DO) so as to calculation of oxygen consumption rate (OCR) of cells and their respiratory activity. The 1 type chip combining the operation of manual sample dripping and the use of a peristatic pump to remove the culture medium was utilized to measure the effect of glucose, insulin, oligomycin, FCCP and rotenone/antimycin A on the cellular activity. The OCR of 3T3-L1 cells calculated by semi-spherical diffusion model in 2.5 mM, 5 mM, 11 mM and 30 mM glucose-containing culture medium was 13.07 ± 0.29 pmol/min、14.99 ± 0.57 pmol/min、17.57 ± 0.59 pmol/min and 21.35 ± 0.75 pmol/min, respectively. Moreover, the cytopiloyne receptor (CPR)-OVE 3T3-L1 cells had the larger OCR, 9.53 ± 0.37 pmol/min, than that (4.52 ± 2.04 pmol/min) of the CPR-KD 3T3-L1 cells. The type 2 chip was integrated with an auto-controllable valve and pump to automatically perform the replacement of culture medium. The chip can be used to monitor the respiratory activity of L929 cells for 15 h. In the future, we expected that these system can rapidly estimate the effects of either drug or genetic therapy on the cell-metabolism.
URI: http://hdl.handle.net/11455/96449
文章公開時間: 10000-01-01
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.