Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96453
標題: 農用搬運車可調整輪距機構雛型之研製
Development of a Prototype of Adjustable Wheel Track Mechanism for Agricultural Vehicles
作者: 張維安
Wei-An Chang
關鍵字: 六連桿機構
可調輪距
最佳化設計
Six-bar linkage
Wheel track
Design optimization
引用: 1. 台灣佐藤實業有限公司。http://www.tw-sato.com.tw/aboutus.html (網頁瀏覽日期:2017/10/29) 2. 邵韋嘉。2013。可調式輪距輪形機器人之導航控制。碩士論文。台北:國立台北科技大學機電整合研究所。 3. 陳文吉、林聖泉。1993。插秧機連桿式插植機構之運動分析與設計準則。農業機械學刊,2(3):45-55。 4. 陳彥同。2010。可變軸距輕型載具之研發。碩士論文。台北:國立台北科技大學機電整合研究所。 5. 康淵、陳信吉。2014。ANSYS入門。新北市:全華圖書。 6. 馮丁樹。機構之自由度。http://140.112.94.11/~dsfon/Mechanism/main_ch2.htm (網頁瀏覽日期:2017/10/29) 7. 惠氏急回機構。https://www.youtube.com/watch?v=2d1J0Ol240Q (網頁瀏覽日期:2017/11/10) 8. 廣華電子商城。http://shop.cpu.com.tw/product/46920/info/ (網頁瀏覽日期:2018/05/04) 9. 鍾政岳。2014。爬管機器人之研製。碩士論文。台中:國立中興大學生物產業機電工程學系。 10. Chang, Y.S., T.C. Lin, 2013, An Optimal G-shaped Load Cell for Two-range Loading, Engineering in Agriculture, Environment and Food 6(4): 172-176. 11. Di Blasi, http://www.nauticexpo.com/prod/di-blasi-22406.html#product-item_482390 (網頁瀏覽日期:2017/11/08) 12. Encoder-EE3020, http://sohomotor.com/catalog/ENCODER/EE3020.PDF (網頁瀏覽日期:2018/05/01) 13. FSR 402 Data Sheet, http://www.trossenrobotics.com/productdocs/2010-10-26-DataSheet-FSR402-Layout2.pdf (網頁瀏覽日期:2018/05/06) 14. Gezgin, E., P.-H. Chang and A.F. Akhan, 2016, Synthesis of a Watt II six-bar linkage in the design of a hand rehabilitation robot, Mechanism and Machine Theory 104:177-189. 15. Hartenberg, R.S. and J. Denavit , 1964, Kinematic synthesis of linkages, http://kmoddl.library.cornell.edu/bib.php?m=23 (網頁瀏覽日期:2017/11/20) 16. Husty, M.L., M. Pfurner, H.-P. Schrocker and K. Brunnthaler, 2007, Algebraic methods in mechanism analysis and synthesis, Robotica 25: 661-675. 17. Kanakaraddi, R.K., M.D. Kulkarni and V.S. Konnur, 2014, Multi-phase synthesis of planar six bar mechanism with rocker as output link, International Journal of Multidisciplinary and Current Research July/Aug: 818-821. 18. Li, X., S. Wei, Q. Liao and Y. Zhang, 2016, A novel analytical method for function generation synthesis of planar four-bar linkages, Mechanism and Machine Theory 101:222-235. 19. Lin, F. S. and T. C. Lin., 2007, Design of a G-shaped Load Cell for Two-Range Weighing Application, International Agricultural Engineering Journal 16(3-4): 79-85. 20. Liu, S., B. Chen, S. Caro, S. Briot, L. Harewood, C. Chen, 2016, A cable linkage with remote centre of motion, Mechanism and Machine Theory 105:583-605. 21. Morio Y., Y. Hanada, K. Teramoto, M. Miwa1, Y. Sawada, K. Murakami, 2016, DEVELOPMENT OF AN INTELLIGENT WORKER ASSISTANCE SYSSTEM USING MACHINE VISION, Proceedings of the 8th International Symposium on Machinery and Mechatronics for Agriculture and Biosystems Engineering (ISMAB), 23-25 May, Niigata, Japan. 22. NI myRIO-1900 USER GUIDE AND SPECIFICATIONS http://www.ni.com/pdf/manuals/376047c.pdf (網頁瀏覽日期:2017/11/15) 23. Shift Bicycle, http://www.likecool.com/Shift_Bicycle--Design--Gear.html (網頁瀏覽日期:2017/11/08) 24. Shin, K., S, Lee., H, Shin., Y, Yoo. and J, Kim, 2012, Coupled linkage system optimization for minimum power consumption, Journal of Mechanical Science and Technology 26 (2) :1099~1106. 25. YouLight, http://www.youlight.com.tw/ (網頁瀏覽日期:2017/11/12) 26. Zhao, P., X. Li, L. Zhu, B. Zi and Q.J. Ge, 2016, A novel motion synthesis approach with expandable solution space for planar linkage based on kinematic-mapping, Mechanism and Machine Theory 105:164-175.
摘要: 農業從業人員常需要農用搬運車協助搬運,然而大型農用車受限於車體輪距過大,無法進入田間作業,小型之農用車雖可以在較窄的畦溝進行作業,但載重不大、作業量不具效益,且車體穩定性不高。本研究在於研製一個可以調整農用推車輪距之機構,以兩組六連桿機構(Watt 型)分別控制農用推車左右輪距,有別於傳統伸縮設計普遍使用的四連桿機構,使用六連桿可使輪距調整幅度更大且車體高度不會過度升高。設計過程利用機構分析結合最佳化設計方法以確定各桿件尺寸,在最佳化設計後的2D模型中,車體的一半輪距由最寬到最窄約縮減了46%,平台高度只上升了11%。為了驗證設計結果,本研究使用CAD軟體繪圖建模及模擬分析確認設計之可行性,接著以3D 列印各組件並配合特殊之螺桿及滑軌安裝方式組裝完成小型雛型機,最後進行變換輪距及穩定度等測試,以確認與分析結果是否一致。依照本研究之機構組裝方式,可使輪距改變時保持輪胎垂直,根據應力分析結果,主要負載之固定滑軌連接器整體之安全係數均大於3.78。而在雛型機測試結果中,車體輪距從最寬到最窄約縮減了26%,平台高度只上升了8%,而在最窄輪距時穩定性只下降了13%,表示在最窄輪距時仍能保有不錯的穩定度。此雛型機開發完成,後人可放大此小型雛型機,並移至田間進行測試。本設計將可適用於不同畦溝寬度之農作物搬運工作,當離開田間到道路行駛時,輪距可以變寬,同時載台可以隨之降低,以增加行駛穩定性。
Farmers often require various agricultural vehicles to carry crops and tools. However, the large agricultural vehicles are limited by excessive wheel track and hard to operate in the small field. On the other hand, the small agricultural vehicles can operate in narrower furrows, but the load capacity is not profitable, and the body is unstable. This research focused on developing a mechanism that can adjust the wheel track of agricultural vehicles. The six-bar linkage (Watt-type) will be adapted. Different from commonly used four-bar linkage, the use of six-bar linkage allows greater range of adjustment in wheel track while the body height will not rise too much. In the design process, we used the method of kinematic analysis combined with the optimization technique to determine the dimension of each linkage. According to 2D model result, from the widest to the narrowest, the half of wheel track is reduced by approximately 46% and the body height is increased by only 11%. To validate the design, the CAD modeling and simulation analysis was carried out to confirm the feasibility of the design, and the components of the linkages will be manufactured by 3D printer. According to result of stress analysis, the safety factor of the major loading part of the connection is more than 3.78. A small-scale prototype of agricultural vehicle was assembled and tested. Regarding to the prototype, from the widest to the narrowest, the wheel track is reduced by approximately 26% and the body height is increased by only 8%. The loss of stability is only about 13%. When the vehicle with this mechanism leaves from the field to the road, the wheel track can be widened, and the height of carrying platform can be reduced to maintain driving stability.
URI: http://hdl.handle.net/11455/96453
文章公開時間: 2018-08-10
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.