Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96457
標題: 以反應曲面法探討鳳梨果乾負壓乾燥模式之研究
Study on Vacuum Drying Models by Response Surface Method for Pineapples
作者: 黃鈵証
Bing-Zheng Huang
關鍵字: 鳳梨
負壓乾燥技術
反應曲面法
Pineapple
Vacuum Drying
Response Surface Method
引用: 1.江伯源、盧訓、林子清。1998。不同儲存時間對原料米及米飯品質之影響。食品科學25(5):559-568。 2.行政院農業委員會農業試驗所。2007。台灣的鳳梨。遠足文化出版。新北市。 3.何榮祥、宋勳、許愛娜、林國照。1991。乾燥方法與稻穀成熟度對稻米胴裂率及食味品質之影響。臺中區農業改良場研究彙報30期:P1 - 13。 4.何德強、岳永飛、張毅、趙新義。2002。新型真空耙式乾燥機的開發。化工進展2002年第21卷第五期:352-353。 5.吳宗諺、蔡淑珍、黃禮棟。2012。多醣預處理對冷凝除濕乾燥花椰菜品質之影響。台灣農業研究61:330-342。 6.余光正、許守平、謝式鴻。2010。真空凍結乾燥技術應用於茶葉之乾燥。冷凍空調技術與應用專輯。 7.林敏。2014。青江菜硝酸鹽含量檢測及栽培策略之建立。碩士論文。台北:台灣大學生物產業機電工程研究所。 8.孫朝棟。1990。食品工程學。p.305-319。藝軒圖書出版社。台北市。 9.張志軍、徐成海、張世偉、何祥。2006。糧食真空乾燥的技術經濟與環境分析。節能 25卷第8期:10-13。 10.陳俊龍。1996。香蜂草乾燥之基本研究。碩士論文。台中:國立中興大學生物產業機電工程學系研究所。 11.陳藹然。2009。蒸氣壓與沸點。科技部高瞻自然科學教學資源平台。http://highscope.ch.ntu.edu.tw/wordpress/?p=4485。2015/6/10。 12.經濟部。2003。乾燥技術效率提升技術手冊。http://lstic.tw/webhd/data/dry.pdf。2016/11/14。 13.鄭宇帆。2009。高光譜影像於龍膽指標成份之檢測應用。碩士論文:台北:臺灣大學生物產業機電工程學研究所。 14.潘姵如。2012。葉菜類蔬菜硝酸鹽含量光譜影像檢測系統及栽培策略之建立。碩士論文。台北:台灣大學生物產業機電工程學系研究所。 15.潘志誠。2013。低溫真空乾燥機。中華人民共和國國家知識產權局。實用新型專利。 16.劉弘仁。2000。紅外線在狹縫式塗佈乾燥上的應用。碩士論文。新竹:國立清華大學化學研究所。 17.盧福明。1986。農產加工工學程。茂昌圖書有限公司。台北市。 18.賴滋漢、金安兒。1990。食品加工學-基楚篇,P125-127。精華出版社。台中市。 19.Brooker, D.B., F.W. Baller-Arkema, and C.W. Hall. 1992. Dring and Storage of Grains and Oilseeds. New York N.Y.:Van Nostrand Reinhold. 20.Box, G.E.P. and D.W. Behnken. 1960. Some New Three Level Designs for the Study of Quantitative Variables. Technometrics, Vol. 2, pp. 455-476. 21.Baş, D. and İ.H. Boyacı. 2007. Modeling and optimization I: Usability of response surface methodology. Journal of food engineering, 78(3): 836-845. 22.Bezerra, M.A., R.E. Santelli, E.P. Oliveira, L.S. Villar, and L.A. Escaleira. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5): 965-977. 23.Bolland, K.M. 2000. A new low-temperature/short-time drying process. Cerel Food World. 45(7):293-296. 24.Charles R. and Hurburgh Jr.. 2008. Soybean Drying and Storage. Iowa State University 11. 25.Pan, Z., R. Khir, K.L. Bett-Garber, E.T. Champagne, J.F. Thompson, A. Salim and S. Mohamed. 2011. Drying characteristics and quality of rough rice under infrared radiation heating. Transactions of the ASABE 54(1): 203-210. 26.Derringer, G. and R. Suich. 1980. Simultaneous Optimization of Several Response Variables. Journal of Quality Technology 12:214-219. 27.Dadali, G., E. Demirhan and B. Özbek. 2008. Effect of drying conditions on rehydration kinetics of microwave dried spinach. Food and Bioproducts Processing 86(4): 235-241. 28.Maskan, M. 2000. Microwave/air and microwave finish drying of banana. Journal of food engineering 44(2): 71-78. 29.Mogi, T., T. Ito, and I. Yamamoto. 1990. Research and development of rapid drying technique for vegetables by use of heating combination with far infrared rays and infrared rays. Vol. 16. Technical Report of Japan Food Industry Center. 30.Niibori, F., and S. Motoi. 1988. Evaporation of vegetables used by infrared rays. Food Processing 23: 38-42. 31.Pan Zhongli, and Griffiths Gregory Atungulu, eds. 2010. Infrared heating for food and agricultural processing. CRC Press. 32.Ramallo, L. A., and R.H. Mascheroni. 2012. Quality evaluation of pineapple fruit during drying process. Food and bioproducts processing 90(2): 275-283. 33.Ressel, B.J. 1994. State-of-the-art on vacuum drying of timber. In Proceedings of the fourth international IUFRO wood drying conference, Rotorua, New Zealand. pp. 255-262. 34.Sandonal-Torres, S., F. Marc, W. Jomaa, and J-R. Puiggali. 2009. Colour changes in oakwood during vacuum drying by contact: Studies on antioxydant potency and infrared spectras in surfaces. Wood research 54(1):45-58. 35.Siebers, Matthew. 2014. Impacts of heat waves on food quantity and quality of soy bean/corn in the Midwest at ambient and elevated[CO2]. Diss. University of Illinois at Urbana-Champaign. 36.Šumić, Z., A. Vakula, A. Tepic´, J. Cˇakarevic´, J. Vitas and B. Pavlic´. 2016. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chemistry 203:465-475. 37.Šumić, Z., A. Tepić, S. Vidović, S. Jokić and R. Malbaša. 2013. Optimization of frozen sour cherries vacuum drying process. Food chemistry 136(1): 55-63. 38.Win, Z., R. Gakkhar, S. Jain, and M. Bhattacharya. 2005 . Parameter optimization of a diesel engine to reduce noise, fuel consumption, and exhaust emissions using response surface methodology. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219(10), 1181-1192.
摘要: 乾燥技術是農產品加工重要的一環,除了解決農產品貯藏的問題外,也可提高農產品之附加價值如:果乾製作其效率及品質是乾燥加工技術的重要指標,但傳統的乾燥技術存在有能源消耗過多且品質較不穩定的問題有待克服,因此本研究導入負壓乾燥技術,期望能以其高效率、高品質且節能的特點,對農產乾燥加工有所提升。 本研究選擇近來受消費者喜愛的鳳梨果乾進行負壓乾燥試驗,以反應曲面法之試驗設計,成功建立5項指標之模型,分別為含水率、水活性、褐變(△W.I.)、復水率與能耗等5項指標,各模型顯著性P值皆達0.05之顯著水準。再利用所建立之模型於不同目標設定下,建立兩組最適化模式,分別為整體最適化模式與色澤最適化模式。整體最適化模式期望值為0.804,可在溫度55℃、負壓-500 mmHg、時間15.56 hr,預期結果為水活性為0.68、褐變為 -0.643、復水率為63.42 % 、能耗21.66 kWh;色澤最適化模式期望值為0.814,在設定溫度為50.35 ℃、負壓為-720 mmHg、時間17.81 hr,預期結果為水活性為0.65、褐變 1.021 、復水率56.63 % 、能耗35.49 kWh。前者各項評估均優;後者在外觀表現最佳,本研究結果可提供加工需求進行模式參考。
Drying technology is an important part of agricultural processing, which not only facilitates products storage, but also makes value-added products such as dried fruit. For drying technology, efficiency and quality are two important indicators. However, traditional drying technology is energy-consuming and the quality of product is unstable. This study introduce vacuum drying technology into the drying process. Applying vacuum drying technology, which is highly efficient, energy-saving and producing good outcome, will certainly improve the agricultural drying process. Regarding the market popularity of dried pineapple, we used fresh pineapple to test the performance vacuum drying technology. Five models of were successfully established by the Response Surface Methodology, which represented 5 indexes, water activity, browning rate(△W.I.), energy consumption and rehydration rate. Those five models are all statistical significant(P>0.05). Two optimal vacuum drying models based on the models of index are established, which are the Overall Optimal Model and Color Optimal Model. The expected value of the OOM is 0.804, when temperature is 55℃, the vacuum pressure is -500 mmHg and the drying time is 15.56 hr. The expected water activity is 0.68, the browning rate is -0.643, the rehydration rate is 63.42% and the energy consumption is 21.66 kWh. The expected value of COM is 0.814, when the temperature is 50.35℃, the vacuum pressure is -720 mmHg, the time is 17.81 hr. The expected water activity is 0.65, browning rate is 1.021, rehydration rate is 56.63%, energy consumption is 35.49 kWh. The OOM has excellent performance in all indexes; the COM has the best color performance. Hence, two choices of model are presented in this study, which provide to the manufacturers depend on their targets of processing.
URI: http://hdl.handle.net/11455/96457
文章公開時間: 2018-08-23
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.