Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96463
標題: 應用整合可拋式磷酸銅電極之毛細管電泳晶片於生物胺檢測之研究
Application of Capillary Electrophoresis Chips Integrated with Disposable Copper Phosphate Electrodes in the Detection of Biogenic Amines
作者: 謝玉函
Yu-Han Hsieh
關鍵字: 磷酸銅
毛細管電泳晶片
組織胺
免標定
copper phosphate
capillary electrophoresis chip
histamine
label free
引用: 蔣惠敏, 可檢測-agonist藥物之安培式毛細管電泳晶片的研發, 國立中興大學生物產業機電工程研究所, 2009年7月 潘羿彤, 整合end-channel之off-chip式電化學平板微電極之毛細管電泳晶片的研發, 國立中興大學生物產業機電工程研究所, 2011年7月 江權庭, 高表面積化銅電極的製作與在電化學感測器的應用, 國立中興大學生物產業機電工程研究所, 2012年7月 李名袁, 奈米銅電極的製作與在胺基酸檢測之應用, 國立中興大學生物產業機電工程, 2014年7月 Aksu S., Electrochemical Equilibria of Copper in Aqueous Phosphoric Acid Solutions, J. Electrochem. Soc. 156 (2009) C387-C394 Baker D.R., Capillary Electrophoresis, 1995. Chiniforoshan H., Ensafi A.A., Heydari-Bafrooei E., Khalesi S.B., Tabrizi L., Polymeric nanoparticle of copper(II)-4,4 '-dicyanamidobiphenyl ligand: synthetic, spectral and structural aspect; application to electrochemical sensing of dopamine and ascorbic acid. Appl. Surf. Sci. 347 (2015) 315–320 Chou C.C., Lin S.P., Lee K.M., Hsu C.T., Vickroy T.W., Zen J.M., Fast differentiation of meats from fifteen animal species by liquid chromatography with electrochemical detection using copper nanoparticle plated electrodes, J. Chromatogr. B 846 (2007) 230–239. Day L., Brown H., Detection of mechanically recovered chicken meat using capillary gel electrophoresis, Meat Sci. 58 (2001) 31-37 Fiechter G., Sivec G., Mayer H.K., Application of UHPLC for the simultaneous analysis of free amino acids and biogenic amines in ripened acid-curd cheeses. J. Chromatogr. B 927 (2013) 191-200 García M., Alonso-Fernandez J.R., Escarpa A., Copper nanowires immobilized on the boards of microfluidic chips for the rapid and simultaneous diagnosis of galactosemia diseases in Newborn Urine Samples, Anal Chem. 85 (2013) 9116−9125 Hulvey M.K., Frankenfeld C.N., Lunte S.M., Separation and detection of peroxynitrite using microchip electrophoresis with amperometric detection, Anal Chem. 82 (2010) 1608–1611 Hwang B.S., Wang J.T, Choong Y.M., A rapid gas chromatographic method for the determination of histamine in fish and fish products, Food Chem. 82 (2003) 329–334 Latorre-Moratalla M.L., Bover-Cid S., Veciana-Nogués T. and Vidal-Carou M.C., Thin-layer chromatography for the identification and semi-quantification of biogenic amines produced by bacteria, J. Chromatogr. A 1216 (2009) 4128–4132 Lee M.Y., Ding S.J., Wu C.C., Peng J., Jiang C.T., Chou C.C., Fabrication of nanostructured copper phosphate electrodes for thedetection of α-amino acids, Sens. actuators. B Chem. 206 (2015) 584–591 MacNair J.E. and Lewis K.C., Jorgenson J.W., Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns, Anal Chem., 69 (1997) 983-989 Mecker L.C., Scott-Martin R., Integration of microdialysis sampling and microchip electrophoresis with electrochemical detection, Anal Chem. 80 (2008) 9257-64. Niaura G., Gaigalas A.K., Vilker V.L., Surface-Enhanced Raman Spectroscopy of Phosphate Anions: Adsorption on Silver, Gold, and Copper Electrodes, J. Phys. Chem. B 101 (1997) 9250-9262 Önal, A., A review: current analytical methods for the determination of biogenic amines in foods, Food Chem. 103 (2007) 1475–1486 Protopopoff E., Marcus P., Potential–pH diagrams for hydroxyl and hydrogen adsorbed on a copper surface, Electrochim. Acta 51 (2005) 408–417. Roman G.T., McDaniel K., Culbertson C.T., High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips, Analyst 131 (2006)194-201 Santos, M.H. Silla, Biogenic amines: their importance in foods, Int J Food Microbiol. 29 (1996) 213-231 Saylor R.A., Lunte S.M., A review of microdialysis coupled to microchip electrophoresis for monitoring biological events, J. Chromatogr. A 1382 (2015) 48-64 Shahrokhian S., Kohansal R., Ghalkhani M., Amini M.K., Electrodeposition of copper oxide nanoparticles on precasted carbon nanoparticles film for electrochemical investigation of anti-HIV Drug nevirapine, Electroanalysis 27 (2015) 1989 –1997. Shalaby A.R., Multidetection, semiquantitative method for determining biogenic amines in foods, Food Chem. 52 (1995) 367-372 Wu X., Shi G., Fabrication of a lotus-like micro–nanoscale binary structured surface and wettability modulation from superhydrophilic to superhydrophobic, Nanotechnology 16 (2005) 2056–2060. Yilmaz U.T., Inan D., Quantification of histamine in various fish samples using square wave stripping voltammetric method, J Food Sci Technol 52 (2015) 6671–6678. Yohai L., Schreiner W.H., Vázquez M. and Valcarce, M. B, Surface characterization of copper, zinc and brass in contact with tap water inhibited with phosphate ions, Appl. Surf. Sci., 257 (2011) 10089– 10095 Zhang L.Y., Sun M.X., Determination of histamine and histidine by capillary zone electrophoresis with pre-column naphthalene-2,3-dicarboxaldehyde derivatization and fluorescence detection, J. Chromatogr. A 1040 (2004) 133–140.
摘要: 組織胺(histamine)為無色無味且具穩定性之含氮化合物,在食品保存不當的環境下容易累積超標導致鯖魚毒素中毒。故本研究以電氧化法開發出快速製備磷酸銅檢測電極的方法,並將晶片式磷酸銅電極與毛細管電泳(capillary electrophoresis, CE) 晶片整合成off-chip end-channel 之CE 快速檢測裝置,以應用於食品組織胺含量檢測。 研究結果顯示在NaH2PO4 溶液中給予Epa1/2 氧化電位可於電極表面製作出花瓣狀的磷酸銅結構,XPS 佐證此結構含有20%以上的Cu3(PO4)2。且該磷酸銅複合物電極也顯示可對組織胺和組胺酸具有良好的電催化活性,其氧化波峰電流分別為背景值的2.72 倍和1.12 倍。整合CE 之檢測裝置對histamine 的線性範圍為0.051 M,靈敏度為0.46 pA/μM,對組織胺與組胺酸同時進行分離的解析度為1.66,可於1 min 內快速得到樣品分離結果。本研究所開發之磷酸銅電極製備法,可使電極製作時間大幅縮短至0.5 h 以內,且與可攜式CE 晶片整合成一電化學式快速檢測裝置,並應用於生物胺之分離與檢測,其免標定、快速且即時檢測的優點,未來可望在食品安全檢測儀器中佔有一席之地。
Histamine, one kind of biogenic amines, is colorless, odorless and extremely stable. High amount of histamine may be produced in foods and cause poisoning, such as scombroid fish poisoning, due to inappropriate storage conditions. An 'electro-oxidation' technology was developed to fast fabricate copper phosphate electrodes for histamine detection. The copper phosphate chip was integrated with a capillary electrophoresis (CE) chip in the off-chip end-channel configuration of CE devices. The results revealed the surfaces of copper phosphate electrodes with flower-shaped structures produced using the oxidation potential of Epa1/2 in NaH2PO4 solutions, and had approximately 20% Cu3(PO4)2 composition examined by X-ray photoelectron spectroscopy (XPS). Moreover, the copper phosphate complex electrodes presented good electro-catalytic activity to histamine and histidine, and their oxidation peak current was 2.72 and 1.12 times higher than the background peak current, respectively. The linear range of histamine detection was 0.05-1 M, and the sensitivity was 0.46 pA/μM. The CE-integrated detection device could separately detect histamine and histidine with a resolution of 1.66 within 1 min. This study provides the one-step procedure of fabricating the copper phosphate electrodes within 0.5 hours. Furthermore, the CE chip integrated with the Cu3(PO4)2-deposited chip has great promise for fast, label-free and real-time measurement of biogenic acids and amino acids.
URI: http://hdl.handle.net/11455/96463
文章公開時間: 10000-01-01
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.