Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96465
標題: NaSbS2 固態半導體敏化太陽能電池
NaSbS2 solid-state semiconductor-sensitized solar cells
作者: 孫薇淇
Wei-Chi Sun
關鍵字: 固態半導體敏化太陽能電池
量子點
Solid-state semiconductor-sensitized solar cells
Quantum dots
引用: [1] M .Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 145-153 (2003). [2] I. Hod, V.G. Pedro, Z. Tachan, F. F. Santiago, I. M. Sero, J. Bisquert, A. Zaban. Dye versus Quantum Dots in Sensitized Solar Cells: Participation of Quantum Dot Absorber in the Recombination Process. The Journal of Physical Chemistry Letter, 2, 3032-3035 (2011). [3] 濱川圭弘,太陽能光電池設計與應用,五南圖書 (2009). [4] M. Gratzel. Photoelectrochemical cells. Nature, 414, 338-344 (2001). [5] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, Md.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Gratzel. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 334, 629 (2011). [6] Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, X. Zhong. Near Infrared Absorption of CdSexTe1–x Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability. American Chemical Society Nano, 6, 5215-5222 (2013). [7] Online:太陽能模組介紹at http://www.hengs.com/solarproducts-pv%20module.html [8] Reported timeline of solar cell energy conversion efficiencies (from National Renewable Energy Laboratory (USA)) (2016). [9] M.C. Hanna and A.J. Nozik, Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers, Journal of Applied Physics, 100, 074510 (2006). [10] Y. Wang, N. Peng, H. Li, and X. Bai, High-Efficiency CdS Quantum-Dots Sensitized Solar Cells with Compressed Nanocrystalline TiO2 Photoelectrodes, Journal of Nanomaterials, Volume 2012, 858693 (2012). [11] S. Abdallah, N. Al-Hosiny, and A. Badawi, Photoacoustic Study of CdS QDs for Application in Quantum-Dot-Sensitized Solar Cells, Journal of Nanomaterials, Volume 2012, 498286 (2012). [12] J.Tian, G.Cao, Semiconductor quantum dot-sensitized solar cells, Nano Reviews, Vol 4, 22578 (2013). [13] Y.Gao, et al., Enhanced hot-carrier cooling and ultrafast spectral diffusion in strongly coupled PbSe quantum-dot solids. Nano Letter, 11, 5471-6 (2001). [14] U .Bach, et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, nature, 395, 583-585 (1998). [15] H.J. Lee, H.C. Leventis, S.J. Moon, P.Chen, S. Ito, S.A. Haque, T.Torres, F.Nüesch, T.Geiger, S.M. Zakeeruddin, M.Grätzel, M.K.Nazeeruddin, PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells: 'Old Concepts, New Results', Advanced Functional Material, Volume 19, Issue 17, 2735–2742 (2009). [16] I.Chung, et al., All-solid-state dye-sensitized solar cells with high efficiency. Nature, 485, 486-489 (2012). [17] Y.C.Chang, N. Suriyawong, B. A. Aragaw, J.B. Shi, P.Chen, M.W.Lee, Lead antimony sulfide (Pb5Sb8S17) solid-state quantum dot-sensitized solar cells with an efficiency of over 4%, Journal of Power Sources, 312 ,86-92(2016). [18] W.C.Yang, M.W.Lee, Enhanced Photovoltaic Performance in AgSbS2 Liquid-Junction Semiconductor-Sensitized Solar Cells, Journal of The Electrochemical Society 161(3) H1-H5 (2014). [19] C.L.Chou, N. Suriyawong, B. Aragaw, J.B. Shi, and M.W.Lee, Ag3SbS3 Liquid-Junction Semiconductor-Sensitized Solar Cells, Journal of The Electrochemical Society, 163 (6), H445-H449 (2016). [20] V. A. Bazakutsa, N. I. Gnidash,A. K. Kul'chitskaya, and A. V. Salov, Photoelectric and optical properties of thin films of ternary chalcogenides of the form MeISbX2VI, Soviet Physics Journal, Volume 18, 472-475 (1975). [21] C.L.Chou and M.W.Lee, Ag3SbS3 Liquid-Junction Semiconductor-Sensitized Solar Cells, Master Thesis, Department of Physics and Institute of Nanoscience, National Chung Hsing University (2015). [22] Jifeng Sun and David J. Singh*Electronic Properties, Screening, and Efficient Carrier Transport in NaSbS2 [23] A. S. Kanischeva, V. G. Kuznetsov, V. N. Batog, Crystal structure of α-NaSbS2, Journal of Structural Chemistry, Volume 20, Issue 1, 122-125 (1979). [24] Par J. Olnier-Fourcadee, Philippo et m. Maurin, Structure des composes NaSbS2α et NaSbS2β. Etude de I'influence de la paire electronique E de I'antimoine III dans la transition NaSbS2α + NaSbS2β, Z. anorg. allg. Chem. 446, 159-168 (1978). [25] L. Zhang, L. Chen, H.Q. Wan, H. Zhou, and J.M. Chen, Preparation of shuttle-like Sb2S3 nanorod-bundles via a solvothermal approach under alkaline condition, Crystal Research and Technology, 45, No. 2, 178 – 182 (2010). [26] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, 32, 33–177 (2004). [27] U. Diebold, The surface science of Titanium dioxide, Surface Science Reports, 48, 53-229 (2003). [28] P.R.BuseckG. L. Nord., 'Imaging transformation-induced microstructure'pp.455-508 in Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy, Rev. Mineral., Vol. 27 [29] H.M. Pathan And C.D.Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method, Bulletin of Materials Science, Vol. 27, No. 2, 85–111, (2004). [30] P.Sudhagar, E.J. Juaraz-Perez, Y.S.Kang, and Ivan, Mora-Sero, Quantum Dot-Sensitized Solar Cells, Low-cost Nanomaterials, DOI:10.1007/978-1-4471-6473-9-5, Springer-Verlag: London (2014). [31] Tae-Ho Kim et al., Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes,Nature Communications, 06/11/2013。 [32] IUPAC, Compendium of Chemical Terminology, 2nd ed. (the 'Gold Book') (1997). Online corrected version: (2006–) 'Auger effect'. [33] Jump up^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the 'Gold Book') (1997). Online corrected version: (2006–) 'Auger electron'. [34] M. Stolka , J.F. Yanus, and D.M. Pai, 'Hole Transport in Solld Solutions of a Diamine in Polycarbonate,' The Journal of Physical Chemistry, 88, 4707-4714 (1984). [35] online:http://www.newport.com/Introduction-to-Solar-Radiation/411919/103 3/content.aspx [36] 陳頤承, 郭昭顯, 陳俊亨, 工業材料雜誌258期(2008).
摘要: 本研究將NaSbS2量子點作為敏化劑應用於固態半導體敏化太陽能電池上。NaSbS2量子點(QDs)半導體使用連續離子層吸附反應(SILAR)法生長於二氧化鈦上,生長最佳條件為SILAR 13 cycle ,將樣品浸泡在 Sb3+ 溶液中 15 秒後再浸泡在 S2- 容液中 60 秒後即為一循環,完成後以溫度 350°C 在氮氣中退火,升溫 10 分鐘,恆溫 50 分鐘,使用 Spiro-OMeTAD 為電解液,金(Au)為對電極。 X – Raydiffaction (XRD) 圖和透射電子顯微鏡 (TEM) 圖像證實成功合成 NaSbS2 ,其 NaSbS2 顆粒大小約 10 ~ 15 nm。在紫外 - 可見光測量表示 NaSbS2 於光波長 300 ~ 750 nm 有高吸收,且其 Eg 為 1.78 eV。由最佳參數做出的電池在 100% 太陽光下得到短路電流 4.97 mA/cm2,開路電壓 0.56 V,填充因子 38.15% 以及轉換效率 1.06%,若降低光源,在10% 的太陽光下,轉換效率提升至 4.11% 並得到短路電流 1.68 mA/cm2 (歸一化可得 16.80 mA/cm2),相較液態半導體敏化太陽能電池最佳效率高出29%。這些結果表明, NaSbS2 是一個有相當潛力的太陽能敏化吸收材料。
The thesis studies NaSbS2 as a sensitizer for solid-state semiconductor-sensitized solar cells. NaSbS2 quantum dots (QDs) semiconductor were grown using the succesive ionic layer adsorption and reaction (SILAR) method. The best condition for the growth process are 13 cycles of SILAR with 15 s of Sb3+ dipping time and 60 s of S2- dipping time, annealing at 350°C for 10/50 min in N2, using Spiro-OMeTAD as the electrolyte, and gold as the counter electrode. The X - Ray diffaction (XRD) patterns and transmission electron microscope (TEM) images confirmed that NaSbS2 was succesfully grown into mesoporous (mp)-TiO2 with particle size of 10 ~ 15 nm. The UV-Visible measurement showed that NaSbS2 grown by the best condition has an energy gap of 1.78 eV which covers 300-750 nm of the optical range. The best cell yielded a short-circuit current density Jsc of 4.97 mA/cm2, an open-circuit voltage Voc of 0.56 V, a fill factor FF of 38.15%, and a power conversion efficiency η of 1.06% under 1 sun. At the reduced light intensity of 0.1 sun, the η increased to 4.11% with Jsc = 1.68 mA/cm2 (which could be normalized to 16.80 mA/cm2). These results indicate that NaSbS2 can be a potential solar absorber material.
URI: http://hdl.handle.net/11455/96465
文章公開時間: 2020-08-01
Appears in Collections:奈米科學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.