請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/96466
標題: 掃描電容顯微術調制效率之研究
A study of Modulation Efficiency in Scanning Capacitance Microscopy
作者: 陳致仰
Jhih-Yang Chen
關鍵字: 調制效率
調制電壓
Modulation efficiency
Modulation voltage
引用: [1] R. Kudrawiec, A. Khachapuridze, G. Cywinski, T. Suski, and J. Misiewicz, Phys. Status Solidi A 206, 847-850 (2009) [2] H. Fitouri, C. Bilel, I. Zaied, A. Bchetnia, A. Rebey, and B. El Jani, Solid State Communications 217, 21-24 (2015) [3] L. Janicki, J. Misiewicz, G. Cywinski, M. Sawicka, C. Skierbiszewski, and R. Kudrawiec, Appl. Phys. Express 9, 021002 (2016) [4] L. Janicki, M. Gladysiewicz, J. Misiewicz, K. Klosek, M. Sobanska, P. Kempisty, Z. R. Zytkiewicz, and R. Kudrawiec, Appl. Surface Science 396, 1657-1666 (2017) [5] P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, and H. G. Hansma, Appl. Phys. Lett. 64 (13), 1738 (1994) [6] A. Schulze, R. Cao, P. Eyben, T. Hantschel, and W. Vandervorst, Ultramicroscopy 161, 59-65 (2016) [7] S. Tanaka, H. Murata, T. Oishi, T. Suzuki, and Y. Zhang, J. Magn. Magn. Mater 383, 170-174 (2015) [8] G. Binnig, and H. Rohrer, Angew. Chem. Inr. Ed. Engl. 26, 606-614 (1987) [9] G. Binnig, C. F. Quate, and C. Gerber, Phys. Review Lett. 56, 930-933 (1986) [10] P. De Wolf, T. Clarysse, and W. Vandervorst, J. Vac. Sci. Technol. B 16, 401 (1998) [11] P. De Wolf, M. Geva, T. Hantschel, W. Vandervorst, and R. B. Bylsma, Appl. Phys. Lett. 73, 2155 (1998) [12] J. Colchero, A. Gil, and A. M. Baro, Phys. Review B 64, 245403 (2001) [13] M. Nonnenmacher, M. P. O'Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991) [14] C. C. Williams, J. Slinkman, W. P. Hough, and H. K. Wickramasinghe, Appl. Phys. Lett. 55, 1662 (1989) [15] E. Brinciotti, G. Badino, M. Knaipp, G. Gramse, J. Smoliner, and F. Kienberger, IEEE Tran. Nano. 16, 245-252 (2017) [16] M. Seydou, Y. J. Dappe, S. Marsaudon, J. P. Aime, X. Bouju, and A. M. Bonnot, Phys. Review B 83, 045410 (2011) [17] C. He, Y. Hao, H. Zeng, T. Tang, J. Xing, and J. Chen, Sepa. Puri. Tech. 81, 174-183 (2011) [18] G. H. Buh, J. J. Kpoanski, J. F. Marchiando, A. G. Birdwell, and Y. Kuk, Jour. Appl. Phys. 94, 2680 (2003) [19] M. N. Chang, C. W. Hu, T. H. Chou, and Y. J. Lee, Appl. Phys. Lett. 101, 083505 (2012) [21] F. H. Eisen, and J. Bottiger, Appl. Phys. Lett, 24, 3 (1974) [20] 蕭宏,半導體製造技術導論,第三版,全華 (2014) [22] Y. J. Lee, T. C. Cho, S. S. Chuang, F. K. Hsueh, Y. L. Lu, P. J. Sung, H. C. Chen, M. I. Current, T. Y. Tseng, T. S. Chao, C. Hu, and F. L. Yang, IEEE T. Electron Dev. 61, 651 (2014) [23] F. Giannazzo, F. Priolo, V. Raineri, and V. Privitera, Appl. Phys. Lett. 76, 2565 (2000) [24] M. Tsuchiya, S. K. R. S. Sankaranarayanan , and S. Ramanathan, Prog. Mater. Sci. 54, 981 (2009) [25] M. H. Oh, T. Yu, S. H. Yu, B. Lim, K. T. Ko, M. G. Willinger, D. H. Seo, B. H. Kim, M. G. Cho, J. H. Park, K. Kang, Y. E. Sung, N. Pinna, and T. Hyeon, Science, 340, 96 (2013) [26] S. Yae, N. Nasu, K. Matsumoto, T. Hagihara, N. Fukumuro, and H. Matsuda, Electrochimica Acta 53, 35-41 (2007) [27] 董書宏, 微波退火製程於奈米銀球探針之影響研究 , 國立中興大學奈米科學所碩士學位論文,(2014) [28] 張茂男, 黃智超, 簡鳳佐, 科儀新知 32卷, No. 1, pp. 6 (2010) [29] Robert L. Boylestad, Introductory Circuit Analysis, Eleventh Edition, P650, by Pearson Education, Inc. [30] J. Smoliner, B. Basnar, S. Golka, E. Gornik, B. Loffler, M. Schatzmayr, and H. Enichimair, Appl. Phys. Lett. 79, 3182 (2001)
摘要: 為了研究材料的性質,有許多材料分析技術是藉由調制技術來取得材料的特性,調制技術為以週期性擾動待測材料並偵測其微小反應的一種方法。掃描電容顯微術(scanning capacitance microscopy,SCM)是一項結合電壓調制的電性掃描探針顯微術,可用於電子材料與元件的奈米電性分析,如半導體的二維載子分布和p-n接面。為了分析的可靠度,知道有多少調制電壓作用在待測區上是很重要的,即調制效率(modulation efficiency,ME)的高低。此外,開發掃描電容顯微術中調制電壓的控制方法也是至關重要的。在本論文中,導電探針、表面氧化層、樣品空乏區、基材、背電極與掃描電容顯微鏡系統,被視為掃描電容顯微術量測架構中的串聯阻抗單元,並以這種方式探討掃描電容顯微術樣品的表面氧化層與背電極對調制效率的影響。實驗結果顯示,相較於傳統的方法,使用紫外光輔助氧化可明顯改善調制效率。此外,具有較低接觸阻抗的背電極,例如,將矽化銀電極用於n型矽基材,也可以明顯提升調制效率。高調制效率使掃描電容顯微鏡提供高載子濃度分布影像對比,並且可使用更低的調制電壓以獲得高解析度。除了高調制效率之外,本研究開發的金屬矽化製程也明顯改善了掃描電容顯微術量測的相對標準差。總括言之,本論文闡述調制效率在掃描電容顯微術中的意義,並強調出樣品製備對掃描電容顯微術的重要性。
For studying the properties of materials, many materials analyses used modulation technology, which periodically perturbs the studied materials and detects the small responses, to obtain the characteristics of material properties. Scanning capacitance microscopy (SCM) is an electrical scanning probe microscopy combining with voltage modulation for nano-electrical analyses on electronic materials and devices, such as two-dimensional carrier distributions and p-n junctions in semiconductors. For analysis reliability, it is important to know how high the modulation voltage is applied to the analyzed areas, that is, how high the modulation efficiency (ME) is. Furthermore, it is also essential to develop a method controlling the modulation voltages in SCM. In this thesis, the conductive probe, the surface oxide layer, depletion regions in the SCM specimen, the sample substrate, the back contact electrode, and the SCM system were considered the series impedance components of SCM measurements. By this way, the influence of the surface oxide layer and the back contact electrode of SCM specimens on the ME will be discussed. Experimental results revealed that UV-assisted oxidation significantly improves the ME in comparison with the typical way. Moreover, the back contact electrode with low contact impedance, e.g., silver silicide electrode for n-type silicon, can also obviously enhanced the ME. High ME allows SCM to provide high image contrast for mapping carrier concentration distribution and to use low modulation voltage for high resolution. In addition to high ME, the metallic silicidation processes developed in this study obviously improve the relative standard deviation (RSD) of SCM measurements. In summary, this thesis clarified the significance of ME in SCM and emphasized the importance of specimen preparation to SCM.
URI: http://hdl.handle.net/11455/96466
文章公開時間: 2018-08-16
顯示於類別:奈米科學研究所

文件中的檔案:
檔案 大小格式 
nchu-106-7104017010-1.pdf4.64 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。