Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96468
標題: 溶膠凝膠法合成Sb2S3量子點敏化太陽能電池的研究
The Study of Sol-gel Prepared Sb2S3 Containing Quantum Dot Sensitized Solar Cell
作者: 傅循
Hsun Fu
關鍵字: 硫化銻量子點
溶膠凝膠法
Sb2S3 Quantum Dot
Sol-gel
引用: [1] M. Kouhnavard, S. Ikeda, N. A. Ludin, N. B. AhmadKhairudin, B. V. Ghaffari, M. A. Mat-Teridi, M. A. Ibrahim, S. Sepeai, K. Sopian, Renew. Sust. Energ. Rev. 37 (2014) 397. [2] Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, X. Zhong, Am. Chem. Soc. Nano. 6 (2013) 5215. [3] A. Yella, H. Lee, H. Tsao, C. Yi, A. Chandiran, M. Nazeeruddin, E. Diau, C. Yeh, S. Zakeeruddin, M. Grätzel, Sci. 334 (2011) 629. [4] B. O'regan, M. Grätzel, Nature. 353 (1991) 737. [5] H. K. Jun, M. A. Careem, A. K. Arof, Mater. Today:Proceedings 3S (2016) S73. [6] 周嘉玲, 國立中興大學奈米科學研究所碩士論文 (2015). [7] M. Green, K. Emery, Y. Hishikawa, W. Warta, E. Dunlop, Prog. Photovolt. 22 (2014) 1. [8] X. Xiao, Q. Liu, G. Dong, X. Zhao, H. Liu, J. Sol-Gel Sci. Techn. 41 (2007) 169. [9] Y. Hui, H. Dijie, J. Zhonghong, D. Yong, J. Sol-Gel Sci. Techn. 3 (1994) 235. [10] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Optoelectronics, Prentice Hall (1999). [11] 徐敏祥, 國立交通大學光電工程研究所碩士論文 (2011). [12] 蔡進譯, 物理雙月刊二十七卷五期 (2005). [13] C. Jeffrey, W. Scherer, Sol Gel Science, Academic Press (1990). [14] M. Aegerter, Sol-gel: Science and Technology, NewJersey, World Scientific(1989). [15] D. Mattox, Thin Solid Films. 204 (1991) 25. [16] M. Wang, C. Grätzel, S. M. Zakeeruddin, M. Grätzel, Energy Environ. Sci. 5 (2012) 9394. [17] 陳佳靜, 國立中興大學物理所碩士論文 (2008). [18] R. Lindblad, B. Cappel, Flannan T. F. O'Mahony, H. Siegbahn, E. Johansson, S. A. Haque, H. Rensmo, Phys. Chem. Chem. Phys. 16 (2014) 17099. [19] C. Lim, S. Im, H. Kim, J. Chang, Y. Lee, S. Seok, Phys. Chem. Chem. Phys. 14 (2012) 3622. [20] A. Henglein, Top. Curr. Chem. 143 (1988) 113. [21] N. Papageorgiou, W. F. Maier, M. Grätzel, J. Electrochem. Soc. 3 (1997) 144. [22] A. Hauch, A. Georg, Electrochim. Acta. 46 (2001) 3457. [23] K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida. Chem. Lett. 32 (2003) 28. [24] J. R. Macdonald, Solid State Ionics. 13 (1984) 147. [25] A. M. Andersson, D. P. Abraham, R. Haasch, S. MacLaren, J. Liu, K. Amine, J. Electrochem. Soc. 149 (2002) 1358. [26] J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, P. Bueno, J. Electroanal. Chem. 475 (1999) 152. [27] M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai, Solid State Ionics. 148 (2002) 283. [28] G. Govindaraj, R. Murugaraj, Mater. Sci. and Eng. B77 (2000) 60. [29] K. Ngai, Physical Rev. 60 (1999) 9369. [30] G. Williams, D. Watts, Trans. Faraday Soc. 66 (1970) 80. [31] E. Cordoncillo, P. Escribano, G. Monros, M. A.Tena, V. Orera, J. Carda, J. Solid State Chem. 118 (1995) 1. [32] M. Zaharescu, M. Crisan, L. Simionescu, D. Crisan, M. Gartner, J. Sol-gel Sci. Techn. 8 (1997) 249. [33] M. Ghamsari, A. Bahramian, Mater. Lett. 62 (2008) 361. [34] Y. Lin, Y. Lin, Y. Meng, Y. Tu, X. Zhang, Opt. Commun. 346 (2015) 64. [35] Y. Ho, M. Lee, Electrochem. Commun. 26 (2013) 48. [36] A. Tubtimtae, K. Wu, H. Tung, M. Lee, G. Wang, Electrochem. Commun. 12 (2010) 1158. [37] C. Wang, Y. Nuli, J. Zhuang, Z. Jiang, Mater. Lett. 56 (2002) 357. [38] U. Ozgur, J Appl. Phys. 98 (2005) 7945 [39] J. Janos, Quantum Theory, Plenum Publishing Corporation (1987) p.346.
摘要: 本實驗使用溶凝膠法合成Sb2S3量子點敏化太陽能電池。利用四異丙醇鈦溶液與量子點及乙醇混合後,以旋轉塗佈法製作太陽能電池中的光反應層。我們使用光學顯微鏡,SEM,X-ray了解光反應層的表面形貌與結晶狀況,並用交流阻抗與量測I-V曲線分析電池的電性。實驗結果顯示,製作光反應層的最佳化的參數為,使用硫化納作為Sb2S3量子點中硫的來源,且塗佈溶液中TiO2:Sb2S3的莫耳比為1:0.1,與酒精混合的濃度為1M且pH為4,在FTO玻璃上旋轉塗佈轉速為2000 rpm,塗佈6層每層30秒,然後在450℃進行溫度處理2小時,最後以0.1M SbCl3溶液浸泡10分鐘進行去鈉處理。結果顯示最佳的電池轉換效率為0.24%,開路電壓為0.38V,短路電流密度為1.30 mA/cm2,填充因子為47.73%。透過SEM表面形貌的觀察發現,光反應層的表面的TiO2約為30nm的顆粒且顆粒之間有孔隙及團聚效應,此團聚效應利於電子在TiO2間的傳遞,而孔隙則利於電解液的滲入並進行電子的交換,這可能為電池光電轉換效率高的原因。
Sensitized solar cells containing Sb2S3 quantum dots semiconductor are prepared by Sol-gel method. The sol solution, which is prepared by mixing of Titanium isopropoxide, alcohol and the Sb2S3 quantum particles, is spin coated on Fluorine doped Tin Oxide glass. The thickness, the morphology, and the crystallization of the coated films are investigated by optical microscope, SEM and X-ray diffraction. The efficiencies of the cells are obtained by measuring I-V curves. The efficiency of the best cell is 0.24%, while, the other parameters of this cell are Voc=0.38V, Jsc=1.30mA/cm2, and FF=47.73%. This cell is prepared according to the following procedures: Sodium sulfide is used as precursor of sulfide, sol solution is prepared with TiO2(mol)/Sb2S3(mol)=1:0.1 in alcohol with 1M concentration, and pH value is 4, the film is coated with 6 layers with coating speed 2000rpm, and then the film is subjected to 450oC heat treatment for 2hrs, and sodium ions are removed by soaking in 0.1M SbCl3 solution for 10mins. The charge transportation mechanism is elucidated by ac impedance measurements. The micrograph of SEM shows the aggregation phenomenon of TiO2 particles.
URI: http://hdl.handle.net/11455/96468
文章公開時間: 10000-01-01
Appears in Collections:奈米科學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.