請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/96469
標題: 熱注入法合成之PbS量子點及在膠體量子點太陽能電池的應用
Hot-Injection synthesis of PbS quantum dots for applications in colloidal quantum dot solar cells
作者: 黃舒崋
Shu-Hua Huang
關鍵字: PbS量子點
PbS Quantum dots
CdS Thin film
Chemical hot injection
Colloidal quantum dot solar cell
引用: [1] 誠逸科技有限公司, 太陽能發電原理(2016). [2] 濱川圭弘, 太陽能光伏電池及其應用, 五南圖書(2009). [3] Reported timeline of solar cell energy conversion efficiencies (from National Renewable Energy Laboratory (USA))(2018). [4] K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, et al., More than 16% solar cells with a new `HIT' (doped a-Si/nondoped a-Si/crystalline Si) structure, Conference Record of the Twenty Second IEEE, 2, 887-892(1991). [5] E. Maruyama, A. Terakawa, M. Taguchi, Y. Yoshimine, D. Ide, et al., Sanyo's Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, 2, 1455-1460(2006). [6] 王佑庭, 以濺鍍法與表面鈍化處理製作矽異質接面太陽能電池,國立中央大學光電科學與工程學系碩士論文(2013). [7] 趙寶鋒, 高效聚合物和硫化鉛膠體量子點太陽電池及其光電性能的研究, 華南理工大學材料科學與工程研究所博士學位論文(2014). [8] G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent, Colloidal Quantum Dot Solar Cells, Chemical Reviews, 115, 12732-12763(2015). [9] A.G. Pattantyus-Abraham, I. J. Kramer, A.R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M.K. Nazeeruddin, M. Gratzel, E.H. Sargent, Depleted-Heterojunction Colloidal Quantum Dot Solar Cells, American Chemical Society, 6, 3374-3380(2010). [10] E.H. Sargent, Colloidal quantum dot solar cells, Nature Photonics, 6, 133-135(2012). [11] S. Emin, S.P. Singh, L. Han , N. Satoh, A. Islam, Colloidal quantum dot solar cells, Solar Energy, 85, 1264–1282(2011). [12] K.W. Johnston, A.G. Pattantyus-Abraham, J.P. Clifford et al., Schottky-quantum dot photovoltaics for efficient infrared power conversion, Applied Physics Letters, 92, 151115(2000). [13] R. Rhodes, S. Asghar, R. Krakow, M. Horiea, Z. Wanga, M.L. Turner, B.R. Saunders, Hybrid polymer solar cells: From the role colloid science could play in bringing deployment closer to a study of factors affecting the stability of non-aqueous ZnO, Colloids and Surfaces A: Physicochemical Engineering Aspects, 343, 50–56(2009). [14] S.F. Sie, N. Suriyawong, J.B. Shi, X. He, L. Zhang, David J. Singh, M.W. Lee, Pb5Sb8S17 quantum dot‐sensitized solar cells with an efficiency of 6% under 0.05 sun: Theoretical and experimental studies, Photovoltaics. 26, 205-213(2018). [15] Lee Y.-L., Huang B.-M., Chien H.-T. Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications, Chemistry of Materials, 20, 6903-6905, (2008). [16] J.M. Luther, M. Law, M.C. Beard, Q. Song, M.O. Reese., R.J. Ellingson, A.J. Nozik, Schottky Solar Cells Based on Colloidal Nanocrystal Films, 8, 3488-3492(2008). [17] G.I. Koleilat, L. Levina, H. Shukla, S.H. Myrskog, S. Hinds, A.G. Pattantyus-Abraham, E.H. Sargent, Efficient, Stable Infrared Photovoltaics Based on Solution-Cast Colloidal Quantum Dots, American Chemical Society, 2,833-840(2008). [18] C. Piliego, L. Protecescu, S. Z. Bisri, M. Kovalenko and M. A. Loi, 5.2% efficient PbS nanocrystal Schottky solar cells, Energy Environmental Science, 6, 3054-3059(2013). [19] T. Ju, R.L. Graham, G. Zhai, Y.W. Rodriguez, A.J. Breeze, L. Yang, G.B. Alers, S.A. Carter, High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature, Applied Physics Letters, 97, 043106(2010). [20] J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu1, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K.W. Chou, A. Fischer, A. Amassian, J.B. Asbury, E.H. Sargent, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation, Nature Materials, 10, 765-771(2011). [21] C.H.M. Chuang, P.R. Brown, V. Bulović, M.G. Bawendi, Improved performance and stability inquantum dot solar cells through band alignment engineering, Nature Materials, Nature Materials, 13, 796-801(2014). [22] G.H. Kim, F.G. Arquer, Y.J. Yoon, X. Lan, M. Liu, O. Voznyy, Z. Yang, F. Fan, A.H. Ip, P. Kanjanaboos S. Hoogland, J.Y. Kim, E.H. Sargent, High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers, American Chemical Society, 15, 7691-7696(2015). [23] 陳俊太, 許千樹, 奈米結構於有機高分子太陽能電池的應用, 國立交通大學應用化學系(2012). [24] L. Shen, G. Zhu, W. Guo, C.Tao, X. Zhang, C. Liu, W. Chen, S. Ruan, Z. Zhong, Performance improvement of TiO2 /P3HT solar cells using CuPc as a sensitizer, Applied Physics Letters, 92, 073307-073309(2008). [25] A.M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D.D. C. Bradley, J. Nelson, J. R. Durrant, Hybrid polymer/metal oxide solar cells based on ZnO columnar structures, Journal of Materials Chemistry, 16, 2088-2096(2006). [26] J.Tang, L. Brzozowski, D. Aaron R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A.G. Pattantyus-Abraham, D. Jamakosmanovic, E.H. Sargent, Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime The Surface Chemical Origins of Exceptional Air and Light-Stability, American Chemical Society, 4, 869-878(2010). [27] A.R. Barkhouse, A.G. Pattantyus-Abraham, L. Levina, .E.H. Sargent, Thiols Passivate Recombination Centers in Colloidal Quantum Dots Leading to Enhanced Photovoltaic Device Efficiency, American Chemical Society, 2, 2356-2362(2008). [28] X. Lan, O.Voznyy, F. Pelayo García de Arquer, M.. Liu, J. Xu, A.H. Proppe, G. Walters, F. Fan, H. Tan, M. Liu, Z. Yang, S. Hoogland, E.H. Sargent, 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation, NANO Letters, 16, 4630-4634(2016). [29] B.D. Chernomordik, A.R. Marshall, G.F. Pach, J. M. Luther, M.C. Beard, Quantum Dot Solar Cell Fabrication Protocols, American Chemical Society, 29, 189-198(2017). [30] M. Guo, X. Zhu, H. Li, Properties of sputtered CdS and CdTe films and performance of CdTe solar cells as a function of annealing temperature, Materials Science in Semiconductor Processing, 40, 917–924(2015). [31] K.P. Bhandari, P.J. Roland, H. Mahabaduge, N.O. Haugen, C.R. Grice, S. Jeong, T. Dykstra, J.Gao, R.J. Ellingson, Thin film solar cells based on the heterojunction of colloidal PbS quantum dots with CdS, Solar Energy Materials & Solar Cells, 117, 476–482(2013). [32] 孫允武教授, 半導體物理與元件課程-二極體原理及電路模型, 第三章(2013) [33] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion e ciency over 26%, Nature Energy, 2, 17032-17039(2017). [34] P. Wang, S.M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Grätzel. Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals. The Journal of Physical Chemistry B, 107, 14336-14341 (2003). [35] 黃乾龍, 銀銻硫薄膜之合成及在異質接面太陽能電池的應用,國立中興大學物理研究所碩士論文(2015). [36] 張嘉玲, Ag3SbS3液態半導體敏化太陽能電池, 國立中興大學物理研究所碩士論文(2015). [37] 顏志豪, 固態Sb2Se3半導體敏化太陽能電池的製作與特性, 國立中興大學物理研究所碩士論文(2013). [38] J. Akhtar, M.A. Malik, P. O'Brien, K.G.U. Wijayantha, R. Dharmadasa, S.J. O. Hardman, D.M. Graham, B.F. Spencer, S.K. Stubbs, W.R. Flavell, D.J. Binks, F. Sirotti, M.E. Kazzie, Ma. Sillye. A greener route to photoelectrochemically active PbS nanoparticles, Journal of Materials Chemistry, 20, 2336–2344(2010). [39] J. He, M. Luo, L. Hu, Y. Zhou, S. Jiang, H. Song, R. Ye, J. Chen, L. Gao, J. Tang, Flexible lead sulfide colloidal quantum dot photodetector using pencil graphite electrodes on paper substrates, Journal of Alloys and Compounds, 596, 73–78(2014). [40] J. Akhtar, M.A. Malik, P, O'Brien, K.G.U. W, R. Dharmadasa, S.J.O. Hardman, D.M. Graham, B.F. Spencer, S.K. Stubbs, W.R. Flavell, D.J. Binks, F. Sirotti, M.E. Kazzie, M. Silly, A greener route to photoelectrochemically active PbS nanoparticles, Journal of Materials Chemistry, 20, 2336–2344(2010). [41] Y. Wang, A. Suna, W. Mahler, R. Kasowski, PbS in polymers. From molecules to bulk solids, American Institute of Physics, 87, 7315-7322(1987). [42] H. Choi, J.H. Song, J. Jang, X.D. Mai, S. Kima, S. Jeong, High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control, 7, 17473–17481(2015). [43] N.R. Yogamalar, K. Sadhanandam, A.C. Bose, R. Jayavel, Quantum confined CdS inclusion in graphene oxide for improved electrical conductivity and facile charge transfer in hetero-junction solar cell, 5, 16856-16869(2015). [44] H. Metin, R. Esen, Annealing studies on CBD grown CdS thin films, Journal of Crystal Growth, 258, 141–148 (2003).
摘要: 本實驗主要以PbS量子點之合成及在膠體量子點太陽能電池的應用,研究分為三個部份:(1)在真空系統下利用化學熱注入法合成的PbS量子點,(2)利用射頻磁控濺鍍機(RF magnetron Sputtering) 濺鍍出CdS薄膜,(3)在進行PbS膠體量子點太陽能電池之研究前,首先將CdS濺鍍在FTO玻璃上,使形成CdS薄膜,此為 N-Type,再利用逐層Layer-By-Layer (LBL)沉積浸漬方法將以熱注入法合成之PbS製備出PbS Film,此為P-Type,最後濺鍍金(Au)電極,待完成膠體量子點太陽能電池架構後,並且皆利用紫外-可見光譜儀(UV-Vis Spectroscopy)、X-ray粉末繞射儀(XRD)、穿透式電子顯微鏡(TEM)、掃描電子顯微鏡(SEM)及原子力顯微鏡(AFM)分析所製備之材料特性。 本實驗經由SEM分析電池剖面圖得知CdS的厚度約100 nm,而經由UV-Vis Spectroscopy進行分析與計算後,能隙約為2.5 eV;藉由TEM得知PbS量子點顆粒大小約3.75 nm,且在1058 nm有出現激子峰(能隙約為1.2 eV),且PbS薄膜厚度約500 nm。目前已知在100 %的太陽光下(AM 1.5)能得到最佳電池轉換效率為0.26 %,短路電流為3.54 mA/cm2,開路電壓為0.36 V,填充因子為20.54 %,且針對此電池存放60天測量8次,發現有良好的穩定性。
This study focuses on the synthesis of PbS quantum dots as well as its application in colloidal quantum dot solar cells (CQDSCs). The fabrication of CQDSCs is divided into three parts:(1) Synthesis of PbS quantum dots by chemical hot injection. (2) Deposition of CdS thin films using RF magnetron sputtering. (3) Assembly of solar cells. First, a CdS film was sputtered on FTO glass. Second, a PbS colloidal quantum dot layer was coated on top of the CdS film using the layer-by-layer deposition method. Finally, an Au electrode was deposited to form the electrical electrode. The PbS/CdS forms a P/N-junction heterostructure solar cell. The synthesized material and the structure of the solar cell were characterized by US-VIS spectroscopy, XRD, TEM, SEM and AFM. The thickness of the CdS thin film, determined through SEM cross-sectional images, is about 100 nm. The energy gap (Eg) of CdS, calculated from UV-Vis absorption spectra, is about 2.5 eV. TEM images showed the particle size of PbS quantum dots to be ~ 3.75 nm, The PbS quantum dots show an exciton peak at 1058 nm, corresponding to an Eg of ~ 1.2 eV. The thickness of the PbS film is about 500 nm. Under 100 % sunlight illumination (AM 1.5) of 100 mW/cm2, the PbS CQD solar cell exhibited a power conversion efficiency of 0.26 %, a short circuit density of 3.54 mA/cm2, an open circuit voltage of 0.36 V and a fill factor of 20.54 %. The CQD solar cells showed high stability after repeated testing for eight times over a period of 60 days.
URI: http://hdl.handle.net/11455/96469
文章公開時間: 2021-07-23

檔案 大小格式 
nchu-107-7105017011-1.pdf7.34 MBAdobe PDF 請求副本

在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。