請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/96473
標題: 過量的氧氣對非晶銦矽氧化物薄膜電晶體電性的影響
The impact of different oxygen flow in the fabrication processes of amorphous In-Si-O thin-film transistors
作者: 劉怡珍
I-Chen Liu
關鍵字: 半導體
薄膜電晶體
低頻雜訊
semiconductors
thin-film transistors
low-frequency noise
引用: 1. 李峻霣, What's fun in EE. 2014. 2. Yamamoto, Y., Technological Innovation of Thin-Film Transistors: Technology Development, History, and Future, in Japanese Journal of Applied Physics. 2012. p. 060001. 3. Franklin, A.D., DEVICE TECHNOLOGY. Nanomaterials in transistors: From high-performance to thin-film applications, in Science. 2015. p. aab2750. 4. Kamiya, T., et al., Present status of amorphous In-Ga-Zn-O thin-film transistors, in Sci Technol Adv Mater. 2010. p. 044305. 5. Nomura, K., et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, in Nature. 2004. p. 488-492. 6. Su, L.-Y., et al., Characterizations of amorphous IGZO thin-film transistors with low subthreshold swing, in IEEE Electron Device Letters. 2011. p. 1245-1247. 7. Lee, J.S., et al., High-Performance a-IGZO TFT With ZrO2 Gate Dielectric Fabricated at Room Temperature, in IEEE Electron Device Letters. 2010. p. 225-227. 8. Hoshino, K., et al., Constant-Voltage-Bias Stress Testing of a-IGZO Thin-Film Transistors, in IEEE Transactions on Electron Devices. 2009. p. 1365-1370. 9. Lee, J.-H., et al., Electrical instabilities and low-frequency noise in InGaZnO thin film transistors, in Physical and Failure Analysis of Integrated Circuits (IPFA), 2010 17th IEEE International Symposium on the. 2010, IEEE. p. 1-7. 10. Jeong-Min, L., et al., Low-Frequency Noise in Amorphous Indium–Gallium–Zinc-Oxide Thin-Film Transistors, in IEEE Electron Device Letters. 2009. p. 505-507. 11. Cho, I.-T., et al., Comparative study of the low-frequency-noise behaviors in a-IGZO thin-film transistors with Al2O3 and Al2O3/SiNx gate dielectrics, in IEEE Electron Device Lett. 2009. p. 828-830. 12. Aikawa, S., et al., Effects of dopants in InOx-based amorphous oxide semiconductors for thin-film transistor applications, in Applied Physics Letters. 2013. p. 172105. 13. Park, H.-W., et al., Device performance and bias instability of Ta doped InZnO thin film transistor as a function of process pressure, in Applied Physics Letters. 2013. p. 102102. 14. Mitoma, N., et al., Stable amorphous In2O3-based thin-film transistors by incorporating SiO2 to suppress oxygen vacancies, in Applied Physics Letters. 2014. p. 102103. 15. Aikawa, S., et al., Suppression of excess oxygen for environmentally stable amorphous In-Si-O thin-film transistors, in Applied Physics Letters. 2015. p. 192103. 16. Chong, E., et al., Amorphous silicon–indium–zinc oxide semiconductor thin film transistors processed below 150 °C, in Applied Physics Letters. 2010. p. 102102. 17. Chong, E., et al., Role of silicon in silicon-indium-zinc-oxide thin-film transistor, in Applied Physics Letters. 2010. p. 252112. 18. Jeong, C.-Y., et al., Investigation of the Low-Frequency Noise Behavior and Its Correlation with the Subgap Density of States and Bias-Induced Instabilities in Amorphous InGaZnO Thin-Film Transistors with Various Oxygen Flow Rates, in Japanese Journal of Applied Physics. 2012. p. 100206. 19. Kizu, T., et al., Homogeneous double-layer amorphous Si-doped indium oxide thin-film transistors for control of turn-on voltage, in Journal of Applied Physics. 2016. p. 045702. 20. Ferain, I., et al., Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors, in Nature. 2011. p. 310-316. 21. Tickle, A.C., Thin-film transistors: a new approach to microelectronics. 1969, John Wiley & Sons. 22. Herman, G.S., et al., Metal oxide semiconductor thin film transistors. 2013, Google Patents. 23. Kagan, C.R., et al., Thin-film transistors. 2003, CRC Press. 24. Kim, M., et al., High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper, in Applied Physics Letters. 2007. p. 212114. 25. Sato, A., et al., Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor, in Applied Physics Letters. 2009. p. 133502. 26. Fortunato, E., et al., Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances, in Advanced materials. 2012. p. 2945-2986. 27. Park, J.S., et al., Review of recent developments in amorphous oxide semiconductor thin-film transistor devices, in Thin Solid Films. 2012. p. 1679-1693. 28. Petti, L., et al., Metal oxide semiconductor thin-film transistors for flexible electronics, in Applied Physics Reviews. 2016. p. 021303. 29. Yang, E.S., Microelectronic devices. 1988, McGraw-Hill New York. 30. Schroder, D.K., Semiconductor material and device characterization. 2006, John Wiley & Sons. 31. Münzenrieder, N., et al., Stretchable and Conformable Oxide Thin‐Film Electronics, in Advanced Electronic Materials. 2015. 32. Geng, D., et al., High-speed and low-voltage-driven shift register with self-aligned coplanar a-IGZO TFTs, in IEEE Electron Device Letters. 2012. p. 1012-1014. 33. Petti, L., et al., Integration of solution-processed (7, 5) SWCNTs with sputtered and spray-coated metal oxides for flexible complementary inverters, in Electron Devices Meeting (IEDM), 2014 IEEE International. 2014, IEEE. p. 26.24. 21-26.24. 24. 34. Sze, S.M., et al., Physics of semiconductor devices. 2006, John wiley & sons. 35. Hoffman, R., et al., ZnO-based transparent thin-film transistors, in Applied Physics Letters. 2003. p. 733-735. 36. Ortiz-Conde, A., et al., A review of recent MOSFET threshold voltage extraction methods, in Microelectronics Reliability. 2002. p. 583-596. 37. Park, W.J., et al., Investigation on doping dependency of solution-processed Ga-doped ZnO thin film transistor, in Applied Physics Letters. 2008. p. 083508. 38. Xu, Y., et al., Development of high-performance printed organic field-effect transistors and integrated circuits, in Physical Chemistry Chemical Physics. 2015. p. 26553-26574. 39. Raja, J., et al., Enhancement of electrical stability of a-IGZO TFTs by improving the surface morphology and packing density of active channel, in Current applied physics. 2013. p. 246-251. 40. Hung, C.-H., et al., A room temperature process for the fabrication of amorphous indium gallium zinc oxide thin-film transistors with co-sputtered ZrxSi1−xO2 Gate dielectric and improved electrical and hysteresis performance, in Japanese Journal of Applied Physics. 2017. p. 04CG06. 41. Von Haartman, M., et al., Low-frequency noise in advanced MOS devices. 2007, Springer Science & Business Media. 42. Johnson, J.B., Thermal agitation of electricity in conductors, in Physical review. 1928. p. 97. 43. Nyquist, H., Thermal agitation of electric charge in conductors, in Physical review. 1928. p. 110. 44. Lundberg, K.H., Noise sources in bulk CMOS, in Unpublished paper. 2002. 45. Bosman, G., et al., Generation-recombination noise in p-type silicon, in Solid-State Electronics. 1982. p. 273-280. 46. Kirton, M., et al., Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/ƒ) noise, in Advances in Physics. 1989. p. 367-468. 47. Amarasinghe, N.V., et al., Extraction of oxide trap properties using temperature dependence of random telegraph signals in submicron metal–oxide–semiconductor field-effect transistors, in Journal of Applied Physics. 2001. p. 5526-5532. 48. von Haartman, M., et al., Random telegraph signal noise in SiGe heterojunction bipolar transistors, in Journal of applied physics. 2002. p. 4414-4421. 49. Ghibaudo, G., et al., Electrical noise and RTS fluctuations in advanced CMOS devices, in Microelectronics Reliability. 2002. p. 573-582. 50. Rigaud, D., et al., Low frequency noise in thin film transistors. IEE Proceedings-Circuits, Devices and Systems, 2002. 149(1): p. 75-82. 51. Kingston, R.H., et al., Semiconductor surface physics, in Physics Today. 1957. p. 38. 52. Hooge, F.N., 1/ƒ noise is no surface effect, in Physics letters A. 1969. p. 139-140. 53. Hooge, F., et al., Lattice scattering causes 1/ƒ noise, in Physics Letters A. 1978. p. 315-316. 54. Fung, T.-C., et al., Low frequency noise in long channel amorphous In–Ga–Zn–O thin film transistors, in Journal of Applied Physics. 2010. p. 074518. 55. Jayaraman, R., et al., A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon, in IEEE Transactions on Electron Devices. 1989. p. 1773-1782. 56. Hung, K.K., et al., A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors, in IEEE Transactions on Electron Devices. 1990. p. 654-665. 57. Liu, C., et al., Evaluating injection and transport properties of organic field-effect transistors by the convergence point in transfer-length method, in Applied Physics Letters. 2014. p. 1_1. 58. Lin, Y.F., et al., Origin of noise in layered MoTe2 transistors and its possible use for environmental sensors, in Advanced Materials. 2015. p. 6612-6619. 59. Kim, J.-S., et al., Plasma treatment effect on charge carrier concentrations and surface traps in a-InGaZnO thin-film transistors, in Journal of Applied Physics. 2014. p. 114503.
摘要: 在薄膜電晶體(Thin Film Transistors, TFTs)的發展中,非晶系氧化半導體 (Amorphous Oxide Semiconductors, AOS)是近年來非常受到重視的材料,相較於非晶矽(a-Si)或是多晶矽(p-Si),有較優秀的電性,如高載子遷移率、低溫製程以及較佳的透光性,如銦鎵鋅氧化薄膜電晶體(Indium Gallium Zinc Oxide TFTs, IGZO TFTs) 即是現今應用最廣泛的非晶氧化薄膜電晶體。然而,非晶氧化物薄膜電晶體對環境中的氧氣、水氣、光源以及製程中的變化都非常敏感,由許多文獻報導中,我們可以了解上述的條件的改變,會造成元件特性的變化。此論文的實驗,主要為探討變化濺鍍薄膜時所通氧氣與氬氣的比例,對元件特性的影響;除了直流量測外,我們也利用低頻雜訊(Low Frequency Noise)的量測,以了解元件特性的改變以及元件中的傳輸特性。我們發現當氧氣含量的比例越高的時候,會使得元件的傳輸模式從載子數傳輸佔大部分,改變為由遷移率傳輸所主導;另外,經過兩種量測結果分析,我們可以知道,載子數量會隨著氧氣含量的比例提高而增加,故我們推測薄膜中的缺陷並非氧缺,而是薄膜中的散射現象增加,使電子的傳輸更加困難,並造成電性的不穩定。因此,調整在濺鍍薄膜時的氧氣流量,固然可以讓臨界電壓(Threshold Voltage)趨近於零,使得電晶體在開關的過程中不用耗費過多的能量,但過多的氧氣則會造成電晶體的電性不穩及電性表現變差。
This study investigates the effect of oxygen flow during fabrication processes for amorphous In-Si-O thin-film transistors. The electrical characteristics, including measurements of direct current (DC) and low frequency noise (LFN), of transistors were explored in detailed. As the experimental results, an important phenomenon can be found that the electron transmission mode was been changed from carrier number fluctuation (CNF) to Hooge mobility fluctuation (HMF), while the proportion of oxygen flow was increased to 50%. In addition, the number of carriers was increased with increasing the proportion of oxygen flow applied in manufacturing processes of transistors. Due to the measured results mentioned above, the dominated defects in In-Si-O thin-film transistors are not oxygen vacancies. On the other hand, owing to the electrons scattering increased upon the oxygen flow increased, the transmissions of electrons are more difficult than that of a transistor fabricated by using low oxygen flow during fabrication processes, leading to the instability of electrical properties in the transistor. In this regard, by manipulating the rate of oxygen flow in fabrication process (sputtering), the threshold voltage (Vth) can be adjusted to close to zero. That is, the energy consumption can be effectively decreased in obtaining switching function (on/off). However, according to the measured results shown in this work, an excessive oxygen content would result in the instability of electrical properties to reduce the performance for In-Si-O thin-film transistors. The transistors manufactured with oxygen flow of 8.3% possess optimum electrical properties, such as Vth of ~0 V, subthreshold swing of ~ 50 meV and high current ratio of ~106, might be useful for optoelectronic nanodevice applications in industrial.
URI: http://hdl.handle.net/11455/96473
文章公開時間: 2020-07-27
顯示於類別:奈米科學研究所

文件中的檔案:
檔案 大小格式 
nchu-106-7104017020-1.pdf3.3 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。