Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96474
標題: 鐵核金殼磁性奈米粒子增強法拉第磁光效應之特性研究及在阿茲海默症檢測之應用
Study of Magneto-Optical Faraday Effect Enhancement in Gold-Coated Iron Oxide Nanoparticles and Application of Alzheimer 's Disease Detection
作者: 陳建銘
Jian-Ming Chen
關鍵字: 鐵核金殼磁性奈米粒子
磁光法拉第
阿茲海默症
Tau蛋白
γ-Fe2O3@Au nanoparticles
magneto-optical Faraday
Tau protein
引用: [1] F. Q. Hu, L. Wei, Z. Zhou, Y. L. Ran, Z. Li, M. Y. Gao, Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer, Adv. Mater. 18 (2006) 2553–2556. [2] Xiaoying Yang, Xiaoyan Zhang, Yanfeng Ma, Yi Huang, Yinsong Wang, Yongsheng Chen, Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers, J. Mater. Chem. 19 (2009) 2710-2714. [3] Jean-Paul Fortin, Claire Wilhelm, Jacques Servais, Christine Ménager, Jean-Claude Bacri, and Florence Gazeau, Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia, J. Am. Chem. Soc. 129 (2007) 2628–2635. [4] Sergei V. Salihov et al, Recent advances in the synthesis of Fe3O4@Au core/shell nanoparticles, Journal of Magnetism and Magnetic Materials. 394 (2016) 173-178. [5] Rajib Ghosh Chaudhuri, Santanu Paria, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications, Chem. Rev. 112 (2012) 2373–2433. [6] I.H. El-Sayed, X. Huang, M.A. El-Sayed, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer, Nano Lett. 5 (2005) 829e34 [7] Dave SR, Gao X, Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology, Nanobiotechnol. 1 (2009) 583-609. [8] Y. Bao, A. B. Pakhomov, Kannan M. Krishnan, Brownian magnetic relaxation of water-based cobalt nanoparticle ferrofluids, J. Appl. Phys. 99 (2006) 08H107. [9] Jin Xie, Kai Chen, Ha-Young Lee, Chenjie Xu, Andrew R. Hsu, Sheng Peng, Xiaoyuan Chen, Ultrasmall c(RGDyK)-Coated Fe3O4 Nanoparticles and Their Specific Targetingto Integrin αvβ3-Rich Tumor Cells, J. AM. CHEM. SOC. 130 (2008) 7542–7543. [10] Leena Mohammed, Hassan G. Gomaa, Doaa Ragab, Jesse Zhu, Magnetic nanoparticles for environmental and biomedical applications: A review, Particuology. 30 (2017) 1–14. [11] 王崇人 科學發展,354 (2002) 48。 [12] Debanjana Ghosh , Nitin Chattopadhyay, Gold and silver nanoparticles based superquenching of fluorescence: A review, Journal of Luminescence. 160 (2015) 223–232. [13] Yuanyuang Lia, Hermann J. Schluesenerb, Shunqing Xua, Gold nanoparticle-based biosensors, Gold Bulletin. 43 (2010) 29–41. [14] L. He, M.D. Musick, S.R. Nicewarner, F.G. Salinas, S.J. Benkovic, M.J. Natan and C.D. Keating, Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization, Journal of the American Chemical Society. 122 (2000) 9071. [15] S. Andreescu and L.A. Luck, Anal Biochem, 2008, 375, 282. [16] H. Cai, C. Xu, P. He and Y. Fang, Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA, Journal of Electroanalytical Chemistry. 510 (2001) 78. [17] Bartłomiej Graczykowski, Andrzej Dobek, Iron–dextran complex: Geometrical structure and magneto-optical features, Journal of Colloid and Interface Science. 363 (2011) 551–556. [18] Prashant K. Jain et al, Surface Plasmon Resonance Enhanced Magneto-Optics (SuPREMO): Faraday Rotation Enhancement in Gold-Coated Iron Oxide Nanocrystals, Nano Lett. 4 (2009) 9. [19] Raj Kumar Dani, Hongwang Wang, Stefan H. Bossmann, Gary Wysin, and Viktor Chikan, Faraday rotation enhancement of gold coated Fe2O3 nanoparticles: Comparison of experiment and theory, J. Chem. Phys. 135 (2011) 224502. [20] Ajeet Kaushik, Rahul DevJayant, Sneham Tiwari, Arti Vashist, Madhavan Nai, Nano-biosensors to detect beta-amyloid for Alzheimer's disease management, Biosensors and Bioelectronics. 80 (2016) 273–287. [21] Förstl H, Kurz A, Clinical features of Alzheimer's disease, Eur Arch Psychiatry Clin Neurosci. 249 (1999) 288-90. [22] Yipeng Wang & Eckhard Mandelkow, Tau in physiology and pathology, Nature Reviews Neuroscience. 17 (2016) 22–35. [23] Arne Ittner et al, Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice, Science. 18 (2017) 904-908 [24] Carlo Ballatore, Virginia M.Y. Lee & John Q, Trojanowski, Tau-mediated neurodegenerat ion in Alzheimer's disease and related disorders, Nature Reviews Neuroscience. 8 (2009) 663-672. [25] 王建枝,田青。Tau蛋白過度磷酸化機制及其在阿爾茨海默病神經元變性中的作用。生物化學與生物物理進展,2012,08:771-777. [26] Marc Vandermeeren et al, Detection of Proteins in Normal and Alzheimer's Disease Cerebrospinal Fluid with a Sensitive Sandwich Enzyme-Linked Immunosorbent Assay, J. Neirrochem. 61 (1993) 1828-1834. [27] Esteves-Villanueva JO, Trzeciakiewicz H, Martic S, A protein-based electrochemical biosensor for detection of tau protein, a neurodegenerative disease biomarker, Analyst. 139 (2014) 2823-31. [28] Adria Neely et al, Ultrasensitive and Highly Selective Detection of Alzheimer's Disease Biomarker Using Two-Photon Rayleigh Scattering Properties of Gold Nanoparticle, ACS Nano. 3 (2009) 2834–2840. [29] Kai-Yuan et al, Plasma Aβ but Not Tau is Related to Brain PiB Retention in Early Alzheimer's Disease, ACS Chem. Neurosci. 9 (2014) 830–836. [30] 林延信 '利用交流法拉第磁光效應分析CRP生物功能性磁性奈米粒子之基本特性' 國立中興大學物理研究所碩士學位論文,2015年。 [31] J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors : review, Sens. Actuat. B. 54 (1999) 3–15. [32] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B. 107 (2003) 668-677. [33] Stephan Link and Mostafa A. El-Sayed, Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles, J. Phys. Chem. B. 21 (1999) 4212–4217. [34] 曾賢德 '金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作' 物理雙月刊32-2. [35] R.Y. Hong, B. Feng, L.L. Chen, G.H. Liu, H.Z. Li, Y. Zheng, D.G. Wei, Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles, Biochemical Engineering Journal. 42 (2008) 290–300. [36] Cai Jingting, Liu Huining, and Zhang Yi, Preparation and characterization of magnetic nanoparticles containing Fe3O4-dextran-anti-β-human chorionic gonadotropin, a new generation choriocarcinoma-specific gene vector, International Journal of Nanomedicine. 6 (2011) 285-294. [37] Lyon, J. L.; Fleming, D. A.; Stone, M. B.; Schiffer, P.; Williams, M. E, Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding, Nano Lett. 4 (2004) 719–723. [38] Ali Hossein Rezayan, Majid Mousavi, Somayyeh Kheirjou, Ghasem Amoabediny, Mehdi Shafiee Ardestani, Javad Mohammadnejad, Monodisperse magnetite(Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method, Journal of Magnetism and Magnetic Materials. 420 (2016) 210–217.
摘要: 本研究以γ-Fe2O3磁性奈米粒子為核心,利用迭代方法(Iteration method)將金奈米粒子沉積在γ-Fe2O3磁性奈米粒子表面上形成核殼結構(Core-Shell)之鐵核金殼磁性奈米粒子(γ-Fe2O3@Au NPs),從X光繞射(XRD)、吸收光譜(UV-vis)、超導量子干涉儀(SQUID)、雷射粒徑分析儀(DLS)、穿透式電子顯微鏡(TEM)和能量色散X-射線光譜(EDS)觀察形貌後確定γ-Fe2O3磁性奈米粒子的表面上有包覆金層。之後我們將鐵核金殼磁性奈米粒子應用在阿茲海默症相關的Tau蛋白檢測,先把鐵核金殼磁性奈米粒子以官能基修飾,然後將Tau蛋白之抗體(Anti-Tau)鍵結在金殼上,得到具有檢測阿茲海默症的鐵核金殼磁性奈米粒子試劑,並且利用法拉第磁光系統檢測Tau蛋白不同濃度。由過去的成果已知,隨著抗原抗體的結合過程中磁性奈米粒子會團聚形成較大的磁簇,而造成法拉第旋轉角的改變,利用葡聚醣包覆磁性奈米粒子的檢測極限為10 ng/ml (10 ppb)。在此次的實驗中我們利用鐵核金殼磁性奈米粒子在特定波長(532 nm)下具有局部表面電漿共振(LSPR)特性與磁性奈米粒子相互作用,使法拉第旋轉角變化量增強,大幅提升檢測靈敏度,其偵測極限可達到1 pg/ml (1 ppt)。此方法除了簡單方便,並且能即時監控結合過程,是未來極具發展潛力的阿茲海默症早期檢測技術。
In this study, γ-Fe2O3 nanoparticles are used as the core and gold were deposited on the surface of γ-Fe2O3 nanoparticles by using the iteration method to form the γ-Fe2O3@Au nanoparticles. The X-ray diffraction (XRD), UV-visible spectrum (UV-vis), superconducting quantum interference device (SQUID), laser diffraction particle size analyzer (DLS), transmission electron microscopy (TEM) and energy dispersive spectrometers (EDS) were used to make sure the gold were actually coated on the γ-Fe2O3 nanoparticles. Then γ-Fe2O3@Au nanoparticles were applied to the detection of tau protein which is associated with Alzheimer's disease. First, the γ-Fe2O3@Au nanoparticles were modified by functional groups and then the Tau antibody (Anti-Tau) was bind on the surface of gold shell to obtain the detection reagents of Alzheimer's disease. The magneto-optical Faraday rotation system was used to detect different concentrations of Tau protein. According to previous work, when antibody conjugated with antigen, the magnetic nanoparticles were agglomerated to form larger magnetic clusters. So the angle of Faraday rotation would change during the process. The detection limit of the dextran coated magnetic nanoparticles was 10 ng/ml (10 ppb). In this experiment, we use γ-Fe2O3@Au nanoparticles on which the local surface plasmon resonance (LSPR) can be induced under specific 532 nm laser so that can interact with the magnetic nanoparticles to increase the Faraday rotation angle. The detection sensitivity is significantly improved, and the detection limit of tau protein can reach 1 pg/ml (1 ppt). This method is not only simple but also convient to monitor the combination process in real-time. Our research has a great development potential in early stage detection of Alzheimer's disease.
URI: http://hdl.handle.net/11455/96474
文章公開時間: 2020-08-25
Appears in Collections:奈米科學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.