Please use this identifier to cite or link to this item:
標題: 電場頻率對非晶藍相液晶電光特性的影響
Frequency effect on electro-optical characteristics of amorphous blue phase liquid crystal.
作者: 王敬舜
Ching-Shun Wang
關鍵字: 霧狀藍相液晶
Blue PhaseIII
Electric-optical effect
dielectric anisotropy
引用: [1] H. Kikuchi, Struct. Bonding 128, 99 (2008). [2] H. Stegemeyer and F. Porsch,' Electric field effect on phase transitions in liquid-crystalline blue-phase systems, ' Physcial Review 30, 3369 (1984). [3] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang ,and T. Kajiyama, 'Polymer-stabilized liquid crystal blue phases,' Nat. Mater. 1, 64 (2002). [4] F. Castales, F. V. Day, S. M. Morris, D-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen,P. J.W. Hands, S. S. Choi, R. H. Friend and H. J. Coles, 'Blue-phase templated fabrication of three dimensional nanostructures for photonic applications,' Nat. Mater. 11, 599 (2012). [5]E. Dubois-Violette and B. Pansu,'Frustration and related topology of blue phases,' Mol.Cryst. Liq. Cryst. 165, 151 (1988) [6]A. Yoshizawa, 'Material design for blue phase liquid crystals and their electro-optical effects,' RSC Adv. 3, 25475 (2013). [7]O. Henrich, K. Stratford, M. E. Cates, and D. Marenduzzo,'Structure of blue phase III of choledteric liquid crystals'Phys.Rev.lett. 106, 107801 (2011) [8]H.-S. Kitzerow, P. P. Crooker, and G. Heppke, ' Line shapes of field-induced blue-phase-III selective reflections,' Phys. Rev. Lett. 67, 2151 (1991). [9]M. J. Costello, S. meiboom, and M. Sammon, 'Electron microscopy of a cholesteric liquid crystal and its blue phase,' Phys. Rev. A, 29(5), 2957 (1984). [10]J. A. N. Zasadzinski, S. Meiboom, M. J. Sammon, and D. W. Berreman, 'Freeze-fracture electron-microscope observations of the blue phase III, ' Phys. Rev. Lett. 57, 364 (1986). [11]曾志翰,「液晶物理特性與藍相液晶之關係」,逢甲大學光電學系碩士論文。(2013)。 [12]R. J. Miller and H. F. Gleeson, 'Lattice parameter measurements from the Kossel diagrams of the cubic crystal blue phases,'J. Phys. II. 6, 909-922(1996). [13]謝宜君,「螺旋強度對藍相液晶晶格面之影響」,逢甲大學光電學系碩士論文。(2014)。 [14] H. J. Coles and H. F. Gleeson, 'Electric field induced phase transitions and color switching in the blue phases of chiral nematic liquid crystals,' Liq. Cryst. 167, 213 (1989). [15]P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz,. 'Photonics and lasing in liquid crystal materials,' Phil. Trans. R. Soc. A 364, 2747–2761 (2006) [16]H. Y. Chen, J. L. Lai, C. C. Chan, and C. H Tseng, 'Fast tunable reflection in amorphous blue phase III liquid crystal,'J. Appl. Phys. 113, 123103 (2013). [17] M. Sato and A. Yoshizawa, 'Electro-optical Switching in a blue phase III exhibited by a chiral liquid crystal oligomer,' Adv. Mater. 19, 4145 (2007). [18] H. J. Coles and M. N. Pivnenko, 'Liquid crystal 'blue phases with a wide temperature range,' Nature 436, 997 (2005). [19] M. Sato and A. Yoshizawa, 'Electro-optical Switching in a blue phase III exhibited by a chiral liquid crystal oligomer,' Adv. Mater. 19, 4145 (2007). [20] Z. Zheng, D. Shen and P. Huang, 'Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules,' New J. Phys. 12, 113018 (2010). [21]H. Y. Chen, J.Y Chiou, and K. X. Yang,'Reversible and fast shift in reflection band of a cubic blue phase in a vertical electric field,'Appl. Phys. 99, 181119 (2011). [22] J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu 'Extended Kerr effect of polymer stabilized blue-phase liquid crystals' Appl. Phys. Lett. 96, 071105 (2010) [23] Y. Li, Y. Chen, J. Sun, S.T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu,'Frequency-dependent electro-optical characteristics of BP III liquid crystal,' Appl. Phys.Lett. 99, 181126 (2011). [24]B. E. A. Saleh and M. C. Teich, Fundamental of photonic-2nd edition , (Wiley-Interscience, New York, 2007). [25]S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, 'Therory of the blue phase of cholesteric liquid crystals,' Phys. Rev. Lett. 46, 1216 (1981). [26]P. H. Keyes, 'High-chirality blue-phase ;lattices are unstable:a theory for formation of blue phase III,' Phys. Rev. Lett. 65, 436 (1990). [27]F. Castles, S. M. Morris, E. M. Terentjev, and H. J. Cole,' Thermodynamically stable blue phase,' Phys. Rev. Lett. 104,157801 (2010). [28] F. Castles, 'A model for the Pockels effect in distorted liquid crystal blue phases,' Appl. Phys. Lett. 107, 101106 (2015). [29]Y. Li, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu,'Dielectric dispersion on kerr constant of blue phase liquid crystals,'Appl. Phys. Lett. 99, 181126(2011) [30] L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, ' A large Kerr constant polymer-stabilized blue phase liquid crystal,'Appl. Phys. Lett. 98, 081109 (2011). [31] P. R. Gerber , ' Electro-optical effects of a small-pitch blue phase system,' Mol. Cryst. Liq. Cryst. 116, 197–206(1985). [32] K. S. Cole and R. H. Cole, J. 'Dispersion and absorption in dielectrics I. Alternating current characteristics,' Chem. Phys. 9, 341 (1941). [33]W. Ockenga,'Differential Interference Contrast (DIC)' (2011). [34]V. Tuchin,'Polarized light interaction with tissues' J. Biomed. Opt, 21(7), 071114(2016). [35] 呂昇峰,「霧狀藍相光電特性之探討」,逢甲大學光電學系碩士論文。(2015)。
摘要: 本文使用之液晶材料不需經過添加高分子材料的程序,只在液晶當中加入旋光性分子就可達到高溫寬的BPIII相態,利用旋光性分子的濃度變化調製出在涵蓋室溫的BPIII相態,並針對電場頻率與大小的變化,觀測BPIII在RGB不同色光下,水平電場液晶盒中光電特性的探討。實驗結果顯示,當電場頻率增加大時穿透光強會逐漸遞減,其原因並非介電消散現象(Dielectric dispersion)所造成的,另一方面藉由量測出RGB三種色光的光穿透率,計算出BPIII在不同場下所誘發出的複折射值,將其區分為兩階段的光電效應,在電場的平方小於100 V2/μm2時,誘發之複折射值為克爾效應(Kerr effect)所造成的;而在電場的平方大於100 V2/μm2時,誘發之複折射值可能為 Pockels effect或其他光電效應所造成的。
Here, room-temperature liquid-crystal BPIII can be obtained by adding chiral dopant only. The temperature range of BPIII can be wider than 25 K. Observation on the electro-optical characteristic of IPS-BPIII was done by controlling the strength and frequency of the external electric field. The experimental results showed that the light transmittance gradually decreases as increasing the frequency of electric field. However, that is not caused by the dielectric dispersion after confirming the frequency dependence dielectric constants of LC. Moreover, the field-dependence induced birefringence was calculated from the polarimetric measurement. When the square of the electric field was less than 100 V2/μm2 , the electric field induced birefringence can be explained by model of Kerr effect. However, when the square of the electric field was greater than 100 V2/μm2, the electric-field induced birefringence might be explained by Pockels effect or other electric-optical effect.
文章公開時間: 2020-08-24
Appears in Collections:奈米科學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.