請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/96477
標題: 黑磷與二硫化鉬凡得瓦異質接面之穿隧電晶體
Tunnel Field-Effect Transistors in van der Waals BP-MoS2 Heterojunction
作者: 姚佑騰
You-Teng Yao
關鍵字: 二維材料
穿隧場效電晶體
異質接面
2D material
Tunnel Field-Effect Transistors
Heterojunction
引用: 1.Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669. 2.Wang, X., et al., Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett, 2008. 100(20): p. 206803. 3.Bao, W., et al., High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Applied Physics Letters, 2013. 102(4): p. 042104. 4.Dean, C.R., et al., Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010. 5(10): p. 722-6. 5.Kuc, A., N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfideTS2. Physical Review B, 2011. 83(24). 6.Radisavljevic, B., et al., Single-layer MoS2 transistors. Nat Nanotechnol, 2011. 6(3): p. 147-50. 7.Eda, G., et al., Photoluminescence from chemically exfoliated MoS2. Nano Lett, 2011. 11(12): p. 5111-6. 8.Mak, K.F., et al., Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010. 105(13): p. 136805. 9.Radisavljevic, B. and A. Kis, Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat Mater, 2013. 12(9): p. 815-20. 10.Li, S.L., et al., Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett, 2013. 13(8): p. 3546-52. 11.Jariwala, D., et al., Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Applied Physics Letters, 2013. 102(17): p. 173107. 12.Li, L., et al., Black phosphorus field-effect transistors. Nat Nanotechnol, 2014. 9(5): p. 372-7. 13.Koenig, S.P., et al., Electric field effect in ultrathin black phosphorus. Applied Physics Letters, 2014. 104(10): p. 103106. 14.Rudenko, A.N. and M.I. Katsnelson, Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Physical Review B, 2014. 89(20). 15.Xia, F., H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 2014. 5: p. 4458. 16.Na, J., et al., Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS nano, 2014. 8(11): p. 11753-11762. 17.Qiao, J., et al., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014. 5: p. 4475. 18.Buscema, M., et al., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett, 2014. 14(6): p. 3347-52. 19.Zhu, W., et al., Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett, 2015. 15(3): p. 1883-90. 20.Deng, Y., et al., Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode. ACS nano, 2014. 8(8): p. 8292-8299. 21.Chen, P., et al., Gate tunable MoS2–black phosphorus heterojunction devices. 2D Materials, 2015. 2(3): p. 034009. 22.Ye, L., et al., Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction. ACS Photonics, 2016. 3(4): p. 692-699. 23.Xu, J., et al., Tunneling field effect transistor integrated with black phosphorus-MoS2 junction and ion gel dielectric. Applied Physics Letters, 2017. 110(3): p. 033103. 24.Huo, N., et al., Tunable Polarity Behavior and Self-Driven Photoswitching in p-WSe2/n-WS2 Heterojunctions. Small, 2015. 11(40): p. 5430-8. 25.Wang, F., et al., Tunable GaTe-MoS2 van der Waals p-n Junctions with Novel Optoelectronic Performance. Nano Lett, 2015. 15(11): p. 7558-66. 26.Huo, N., et al., Novel Optical and Electrical Transport Properties in Atomically Thin WSe2/MoS2 p-n Heterostructures. Advanced Electronic Materials, 2015. 1(5): p. 1400066. 27.Chuang, S., et al., Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes. Applied Physics Letters, 2013. 102(24): p. 242101. 28.Roy, T., et al., Field-effect transistors built from all two-dimensional material components. Acs Nano, 2014. 8(6): p. 6259-6264. 29.Sarkar, D., et al., A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature, 2015. 526(7571): p. 91-5. 30.Roy, T., et al., 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. Applied Physics Letters, 2016. 108(8): p. 083111. 31.Roy, T., et al., Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. Acs Nano, 2015. 9(2): p. 2071-2079. 32.Nourbakhsh, A., et al., Transport Properties of a MoS2/WSe2 Heterojunction Transistor and Its Potential for Application. Nano Lett, 2016. 16(2): p. 1359-66. 33.Shim, J., et al., Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat Commun, 2016. 7: p. 13413. 34.Yan, R., et al., Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment. Nano Lett, 2015. 15(9): p. 5791-8. 35.Neamen, D.A., semiconductor physics and devices basic principles 4th. 2011. 36.Xu, Y., et al., Development of high-performance printed organic field-effect transistors and integrated circuits. Phys Chem Chem Phys, 2015. 17(40): p. 26553-74. 37.Dürkop, T., et al., Extraordinary mobility in semiconducting carbon nanotubes. Nano letters, 2004. 4(1): p. 35-39. 38.Castellanos-Gomez, A., et al., Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Materials, 2014. 1(1): p. 011002. 39.Hu, W., et al., Effects of interlayer coupling and electric fields on the electronic structures of graphene and MoS2 heterobilayers. J. Mater. Chem. C, 2016. 4(9): p. 1776-1781. 40.Zhong, H., et al., Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations. Sci Rep, 2016. 6: p. 21786. 41.Edmonds, M.T., et al., Creating a Stable Oxide at the Surface of Black Phosphorus. ACS Appl Mater Interfaces, 2015. 7(27): p. 14557-62. 42.Flöry, N., et al., A WSe2/MoSe2 heterostructure photovoltaic device. Applied Physics Letters, 2015. 107(12): p. 123106. 43.Chen, P., et al., Gate tunable WSe2-BP van der Waals heterojunction devices. Nanoscale, 2016. 8(6): p. 3254-8. 44.Feng, Z., et al., Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure. 2D Materials, 2016. 3(3): p. 035021. 45.Li, H.M., et al., Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat Commun, 2015. 6: p. 6564. 46.Ahn, J.H., et al., Deterministic Two-Dimensional Polymorphism Growth of Hexagonal n-Type SnS2 and Orthorhombic p-Type SnS Crystals. Nano Lett, 2015. 15(6): p. 3703-8. 47.Wang, C., et al., Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe2/WS2 p-n heterojunctions. Phys Chem Chem Phys, 2016. 18(40): p. 27750-27753. 48.Okimoto, H., et al., Low-Voltage Operation of Ink-Jet-Printed Single-Walled Carbon Nanotube Thin Film Transistors. Japanese Journal of Applied Physics, 2010. 49(2): p. 02BD09. 49.Yuan, H., et al., High-Density Carrier Accumulation in ZnO Field-Effect Transistors Gated by Electric Double Layers of Ionic Liquids. Advanced Functional Materials, 2009. 19(7): p. 1046-1053.
摘要: 我們使用機械剝離法與乾式轉印製作出厚度分別為9 nm與6 nm的黑磷與二硫化鉬異質接面穿隧電晶體。透過室溫基本電性量測,發現具有p-n與n-n兩種不同的接面,同時繪出其能帶與費米能階之關係。進一步,利用變溫環境量測電性,在p-n接面發現具有負微分電阻與帶隙間穿隧之特性,而在n-n接面具有半導體態與金屬態轉換之現象。並透過變溫電性分析,斷定零偏壓下的能帶為異質接面中型態三-裂隙,與了解各偏壓下之電子傳輸方式。在應用方面,我們針對高、低溫環境,歸納出較適合作為元件應用之範圍,並且用閘極的調控做出整流比,其值在100 K、閘極偏壓在-45 V時,高達103。最後,我們在室溫下,利用離子液體當作閘極,製作出穿隧電晶體,成功得到的較低的次臨界擺幅值。
We produced tunneling field effect transistors (TFETs) in van der walls BP-MoS2 heterojunction by mechanically exfoliated and dry transferred. The thickness of the BP-MoS2 TFET are 9 nm and 6 nm, respectively. Two different junction types, p-n and n-n, were found through electrical measurement under room temperature, and plot the energy band alignment of BP-MoS2 heterojunction with electrostatic gating control. Moreover, we observed negative differential resistance (NDR) and band to band tunneling (BTBT) in p-n junction. The device showed a metal insulator transition (MIT) in n-n junction. Furthermore, the broken-gap band alignment and electrostatic transport are confirmed by electrical analysis at varying temperature. In applications, we found not only regions of the device which can work with low subthreshold swing but the rectification ratio by electrostatic gating control at high or low temperature. The rectification ratio up to 103 at Vbg=-45 V and 100 K. At last, we obtained the best subthreshold swing of BP-MoS2 TFET with ionic liquid gate.
URI: http://hdl.handle.net/11455/96477
文章公開時間: 2020-07-24
顯示於類別:奈米科學研究所

文件中的檔案:
檔案 大小格式 
nchu-106-7104017023-1.pdf2.88 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。