請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/96478
標題: β-型氧化鎵薄膜原子層沉積生長與其結構特性之研究
Atomic layer deposition and characterization of β-Ga2O3 films
作者: 周鉦評
Cheng-Ping Chou
關鍵字: β-型氧化鎵
Atomic Layer Deposition
引用: K. Takahashi et al. 'Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices', Springer, Optical & Electronic Materials, pp. 1-24 (2007) S. W. Kaun et al. 'β-(AlxGa1−x)2O3/Ga2O3 (010) heterostructures grown on β-Ga2O3 (010) substrates by plasma-assisted molecular beam epitaxy', Journal of Vacuum Science & Technology A 33, 041508 (2015) R. Zou et al. 'High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts', Small 10(9), 1848–1856 (2014). K. Sasaki et al. 'MBE grown Ga2O3 and its power device applications', Journal of Crystal Growth 378, 591 (2013). B.J. Baliga, 'Power semiconductor device figure of merit for high-frequency applications', IEEE Electron Device Letters 10, 455 (1989). Y. Kokubun et al. 'Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors', Appl. Phys. Lett. 90, 3 (2007). M. Higashiwaki et al. 'Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics', Appl. Phys. Lett. 103, 123511 (2013). K. Sasaki et al. 'Ga2O3 Schottky Barrier Diodes Fabricated by Using Single-Crystal β– Ga2O3 (010) Substrates', IEEE electron device Lett., 34, 493 (2013). S. Ohira et al. 'Growth of hexagonal GaN films on the nitridated β‐Ga2O3 substrates using RF‐MBE', Phys. Status Solidi C 4, 2306 (2007). D. Guo et al. 'Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology', Optical Materials Express 4, 1067 (2014). V. I. Nikolaev et al. 'Epitaxial growth of ('2' ̅01) β-Ga2O3 on (0001) sapphire substrates by halide vapour phase epitaxy', Materials Science in Semiconductor Processing 47, 16 (2016). F. B. Zhang et al. 'Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition', Journal of Crystal Growth 387, 96 (2014). Q. Cao et al. 'β-Ga2O3 epitaxial films deposited on epi-GaN/sapphire (0001) substrates by MOCVD', Materials Science in Semiconductor Processing 77, 58 (2018). H. Akazawa, 'Formation of Various Phases of Gallium Oxide Films Depending on Substrate Planes and Deposition Gases', Vacuum 123, 8 (2016). R. Roy et al. 'Polymorphism of Ga2O3 and the System Ga2O3—H2O', J. Am. Chem. Soc. 74, 719 (1952). S. Yoshioka et al. 'Structures and energetics of Ga2O3 polymorphs', J. Phys.: Condens. Matter 19, 346211 (2007). J. Kohn et al. 'Characterization of β-Ga2O3 and its alumina isomorph, θ-Al2O3', G. Katz, and J. D. Broder, Am. Mineral. 42, 398 (1956). S. I. Stepanov et al. 'Gallium oxide: properties and applications-a review', Rev. Adv. Mater. Sci. 44, 63 (2016). Pearton et al. 'A review of Ga2O3 materials, processing, and devices', Appl. Phys. Rev. 5, 011301 (2018) M. Slomski et al. 'Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants', J. Appl. Phys. 121, 235104 (2017). N. Ueda et al. 'Anisotropy of electrical and optical properties in β-Ga2O3 single crystals', Appl. Phys. Lett. 71, 933 (1997). M. Yan-Mei et al. 'High-pressure and high-temperature behavior of gallium oxide', Chin. Phys. Lett. 25, 1603 (2008). T. Suntola, J. Antson, inventors, Method for producing compound thin films, Patent 4058430, November 15 (1977). S. M. George, 'Atomic Layer Deposition: An Overview', Chem. Rev. 110, 111 (2009). R. W. Johnson et al. 'A brief review of atomic layer deposition: from fundamentals to applications', Mater. Today, 17, 236 (2014). A. Hultqvist et al. 'Evaluation of Zn-Sn-O buffer layers for CuIn0.5Ga0.5Se2 solar cells', Prog. Photovoltaics Res. Appl. 19, 478 (2011). K. Mistry et al. 'A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging', Electron Devices Meeting 2007, IEDM 2007, IEEE International, 2007, pp. 247–250. D. Choi et al. 'Low temperature Ga2O3 atomic layer deposition using gallium tri-isopropoxide and water', Thin Solid Films, 546, 31 (2013). Y. Chen et al. 'The lattice distortion of β-Ga2O3 film grown on c-plane sapphire', J Mater Sci, Mater Electron 26, 3231 (2015). J. Narayan et al. 'Defects and interfaces in epitaxial ZnO/α-Al2O3 and AlN/ZnO/α-Al2O3 heterostructures', J. Appl. Phys. 84, 2597 (1998). P. R. Willmott et al. 'RHEED analysis of interface growth modes of TiN films on Si (001) produced by crossed beam laser ablation', Appl. Surf. Sci. 127, 105 (1998). W. Seiler et al. 'Epitaxial growth of gallium oxide films on c-cut sapphire substrate', Thin Solid Films 589, 556 (2015). F. Boschi et al. 'Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD', Journal of Crystal Growth 443, 25 (2016). W. S. Lau et al. 'Evidence that N2O is a Stronger Oxidizing Agent than O2 for the Post-Deposition Annealing of Ta2O5 on Si Capacitors', Jpn. J. Appl. Phys. 36, 661 (1997). M.S. Silberberg, Chemistry: The Molecular Nature of Matter and Change, 3rd edition, McGraw Hill (2003). 許樹恩, 'X光繞射原理與材料結構分析', 中國材料科學學會(1993) T. Oshima et al. 'Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors', Jpn. J. Appl. Phys. 46, 7217 (2007). F. B. Zhang et al. 'Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition', Journal of Crystal Growth 387, 96 (2014). K. Matsuzaki et al. 'Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3', Appl. Phys. Lett. 88, 092106 (2006). S. Rafique et al. 'Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition', Appl. Phys. Lett., 109, 132103 (2016). S. Nakagomi et al. 'Crystal orientation of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrate', Journal of Crystal Growth 349, 12 (2012). Y. Lv et al. 'Characterization of β-Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique', Vacuum 86, 1850 (2012).
摘要: 本研究採用大氣式原子層沉積法在未退火及800℃氮氣環境下退火之緩衝層上製備β-型氧化鎵薄膜。原子層沉積磊晶技術透過以三乙基鎵(TEGa)與氧化亞氮(N2O)做為鎵及氧原子之前驅氣體在大氣壓下操作。由文獻研究發現當使用三乙基有機金屬化合物如三乙基鎵(TEGa)代替三甲基如三甲基鎵(TMGa)做為鎵的前驅物時,可顯著減少碳污染。另外由文獻比較幾種被廣泛使用作為氧的前驅物的氧化劑發現氧分子的原子間雙鍵及水蒸氣分子氫與氧原子鍵結之鍵結能都比氧化亞氮分子中的氮與氧原子鍵結之鍵結能高。因此,由幾個常見氧化劑鍵結能比較發現使用氧化亞氮作為氧原子之前驅物生長β-型氧化鎵薄膜可以在同一沉積溫度下提供更多的氧自由基。 研究結果顯示單純(-201)平面方向β-型氧化鎵薄膜可在不同成長溫度下製備於氧化鋁基板上。同時,β-型氧化鎵薄膜與氧化鋁基板之間磊晶關係可以確定為β-型氧化鎵(-201)平面與氧化鋁基板(0001)平面互為平行。另外選區繞射分析之繞射點可以利用倒晶格向量計算與平面間夾角關係定義。
In this study, the β-Ga2O3 films were deposited using ALD technique on the buffer layers without annealing and 800℃-N2-annealing. The epitaxial technique, atomic layer deposition (ALD) was employed at atmosphere pressure through using triethylgallium (TEGa) and nitrous oxide (N2O) as Ga and O precursors. It have been reported that the triethyl organometallic compounds such as triethylgallium (TEGa), when used instead of the trimethyl such as trimethylgallium (TMGa) can reduce the carbon contamination remarkably. Several common oxidizing agents have been widely employed as O precursor. It has been proposed that the binding energies of O=O and O–H bonds of oxygen and water vapor molecules, respectively, are higher than that of the O–N bond in the nitrous oxide. Thus, comparing with common oxidizing agents, the use of nitrous oxide as the oxygen source for β-Ga2O3 deposition allows to provide high overpressure of oxygen radicals at the same deposition temperature. It was found that (-201)-oriented β-Ga2O3 films can be successfully grown on c-Al2O3 substrates with different growth temperatures. Furthermore, the corresponding epitaxial relationship between β-Ga2O3 films and c-Al2O3 substrate can be concluded that the β-Ga2O3 (-201) plane and Al2O3 (0001) plane are in parallel to each other. The SAED pattern diffraction spots of β-Ga2O3 films could be precisely determined by calculating interplanar spacings and angles.
URI: http://hdl.handle.net/11455/96478
文章公開時間: 2020-07-30

檔案 大小格式 
nchu-107-7105017009-1.pdf2.96 MBAdobe PDF 請求副本

在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。