請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/96479
標題: 二銻化鉬與二硫化錫異質結構場效電晶體之掃描光電流顯微術分析
Use Scanning Photocurrent Microscopy to Investigate MoTe2/SnS2 Heterostructure FETs
作者: 林宗緯
Tsung-Wei Lin
關鍵字: 異質結構
穿隧式場效電晶體
掃描光電流顯微術
二銻化鉬
二硫化錫
Heterostructure
TFET
SPCM
MoTe2
SnS2
引用: 1.A. K. GEIM and K.S.NOVOSELOV ,Nature Mater. 6 , 183 ,2007). 2. Rinaldo Raccichini, Alberto Varzi, Stefano Passerini and Bruno Scrosati, Nature Mater. 14 ,271, (2015). 3. 蘇雅雯, '神奇的二維材料Graphene與MoS2,' 奈米通訊 21, 36 (2011). 4. A. K. Geim and I. V. Grigorieva, Nature 499,419(2013). 5. Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz, PRL. 105, 136805 (2010). 6. Andres Castellanos-Gomez, Leonardo Vicarelli, Elsa Prada, Joshua O Island, K L Narasimha-Acharya, Sofya I Blanter, Dirk J Groenendijk, Michele Buscema, Gary A Steele, J V Alvarez, Henny W Zandbergen, J J Palacios and Herre S J van der Zant, 2D Mater. 1, 025001,(2014). 7. K. S. Novoselov, A. Mishchenko , A. Carvalho , A. H. Castro Neto , Science 353, 6298 , (2016). 8. Yongji Gong, Junhao Lin, XingliWang, Gang Shi, Sidong Lei, Zhong Lin, Xiaolong Zou, Gonglan Ye, Robert Vajtai, Boris I. Yakobson, Humberto Terrones, Mauricio Terrones, Beng Kang Tay, Jun Lou, Sokrates T. Pantelides, Zheng Liu, Wu Zhou and Pulickel M. Ajayan, Nature Mater.13 , 1136 , (2014). 9. Hualing Zeng, Junfeng Dai, Wang Yao, Di Xiao and Xiaodong Cui, NAT NANOTECHNOL. 7, 490, (2012). 10. Myoung-Jae Lee, Ji-Hoon Ahn, Ji Ho Sung, Hoseok Heo, Seong Gi Jeon, Woo Lee, Jae Yong Song, Ki-Ha Hong, Byeongdae Choi, Sung-Hoon Lee and Moon-Ho Jo, Nat. Commun 7, 12011, (2016). 11. Xu Cui, Gwan-Hyoung Lee, Young Duck Kim, Ghidewon Arefe, Pinshane Y. Huang, Chul-Ho Lee,Daniel A. Chenet, Xian Zhang, LeiWang, Fan Ye, Filippo Pizzocchero, Bjarke S. Jessen,Kenji Watanabe, Takashi Taniguchi, David A. Muller, Tony Low, Philip Kim and James Hone, NAT NANOTECHNOL. 10, 534, (2015) 12. Ming-Yang Li, Yumeng Shi, Chia-Chin Cheng, Li-Syuan Lu, Yung-Chang Lin, Hao-Lin Tang, Meng-Lin Tsai, Chih-Wei Chu, Kung-Hwa Wei, Jr-Hau He, Wen-Hao Chang, Kazu Suenaga, Lain-Jong Li, Science, 349 ,524, (2015) . 13. Yun Huang, Xueying Zhan, Kai Xu, Lei Yin, Zhongzhou Cheng, Chao Jiang, Zhenxing Wang, and Jun He, APL. 108, 013101, (2016). 14. Sujay B. Desai, Surabhi R. Madhvapathy, Angada B. Sachid, Juan Pablo Llinas, Qingxiao Wang, Geun Ho Ahn, Gregory Pitner, Moon J. Kim, Jeffrey Bokor, Chenming Hu, H.-S. Philip Wong, Ali Javey, 354, 99, (2016). 15. Tania Roy, Mahmut Tosun, Xi Cao, Hui Fang,Der-Hsien Lien,Peida Zhao,Yu-Ze Chen,Yu-Lun Chueh, Jing Guo,and Ali Javey, ACS Nano 9 , 2071,(2015). 16. Tianchao Niu , Ang Li, Prog. Surf. Sci. 90, 21, (2015). 17. Áron Szabó, Steven J. Koester, and Mathieu Luisier, IEEE Electron Device Lett. 36, 514, (2015). 18. Yuzheng Guo and John Robertson, APL. 108, 233104, (2016). 19. Chao Fan,Yan Li,Fangyuan Lu,Hui-Xiong Deng,Zhongming Wei and Jingbo Li, RSC Adv. 6, 422, (2016). 20. Yen-Fu Lin, Yong Xu, Sheng-Tsung Wang, Song-Lin Li, Mahito Yamamoto, Alex Aparecido-Ferreira, Wenwu Li, Huabin Sun, Shu Nakahara, Wen-Bin Jian, Keiji Ueno , and Kazuhito Tsukagoshi, Adv. Mater. 26, 3263, (2014). 21. Lee A. Burton, Diego Colombara, Ruben D. Abellon, Ferdinand C. Grozema, Laurence M. Peter, Tom J. Savenije, Gilles Dennler, and Aron Walsh, Chem. Mater. 25, 4908, (2013). 22. Neamen, Donald A., Semiconductor physics and devices : basic principles, 4th ed., University of New Mexico pp. 45. 277.354-355. 332. 386. 23.孫允武,半導體物理與元件5,中興物理 24. D.J. Wouters ,J.-P. Colinge, H.E. Maes, IEEE Transactions on Electron Devices , 37, 2022, (1990). 25. Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng, Jayakumar Balakrishnan, Tian Lei1, Hye Ri Kim, Young Il Song, Young-Jin Kim, Kwang S. Kim, Barbaros O zyilmaz, Jong-Hyun Ahn1, Byung Hee Hong and Sumio Iijima, NAT NANOTECHNOL.5, 574, (2010). 26. Di-Yan Wang , I-Sheng Huang , Po-Hsun Ho , Shao-Sian Li , Yun-Chieh Yeh ,Duan-Wei Wang , Wei-Liang Chen , Yu-Yang Lee , Yu-Ming Chang , Chia-Chun Chen , Chi-Te Liang , and Chun-Wei Chen, Adv. Mater.25, 4521, (2013). 27. Huynh Van Ngoc, Yongteng Qian, Suk Kil Han & Dae Joon Kang, Scientific Reports 6, 33096, (2016). 28. Andres Castellanos-Gomez, Michele Buscema, Rianda Molenaar,Vibhor Singh, Laurens Janssen, Herre S J van der Zant and Gary A Steele, 2D Mater.011002,(2014). 29. T Uwanno,YHattori, T Taniguchi,KWatanabe andKNagashio, 2D Mater. 2, 041002, (2015). 30. Hai Li,Jumiati Wu, Xiao Huang, Gang Lu, Jian Yang, Xin Lu, Qihua Xiong,and Hua Zhang, ACS Nano.7, 10344, (2013). 31. Q. J. Song, Q. H. Tan, X. Zhang, J. B. Wu, B. W. Sheng, Y. Wan, X. Q. Wang, L. Dai, and P. H. Tan, PRB. 93, 115409, (2016). 32. Huidong Zang, Prahlad K. Routh, Yuan Huang, Jia-Shiang Chen, Eli Sutter, Peter Sutter and Mircea Cotlet, ACS Nano. 10, 4790, (2016). 33. Liangbo Liang and Vincent Meunier, Nanoscale., 6, 5394, (2014). 34. Mahito Yamamoto, Sheng Tsung Wang, Meiyan Ni, Yen-Fu Lin, Song-Lin Li, Shinya Aikawa, Wen-Bin Jian, Keiji Ueno,Katsunori Wakabayashi,and Kazuhito Tsukagoshi, ACS Nano. 8, 3895, (2014). 35. Yuan Huang,Eli Sutter,Jerzy T. Sadowski, Mircea Cotlet, Oliver L.A. Monti, David A. Racke,Mahesh R. Neupane, Darshana Wickramaratne, Roger K. Lake, Bruce A. Parkinson and Peter Sutter, ACS Nano.8, 10743, (2014) 36. Taesoo Kwon, Hyosub An, Young-Soo Seo, and Jongwan Jung, JJAP.51, 04DN04-1,(2012). 37.Bruker, Atomic Force Microscopes (https://www.bruker.com/products/surface-and-dimensional-analysis/atomic-force-microscopes/campaigns/afm-microscopes.html) 38. Tobias J. Octon, V. Karthik Nagareddy, Saverio Russo, Monica F. Craciun, and C. David Wright, Adv. Optical Mater. 4, 1750, (2016). 39. Cameron J Shearer, Ashley D Slattery, Andrew J Stapleton,Joseph G Shapter and Christopher T Gibson, Nanotechnology 27, 10, (2016). 40. JoshuaOIsland, GaryASteele, Herre S J van der Zant and Andres Castellanos-Gomez, 2D Mater. 2 011002, (2015). 41.Lake Shore, Model TTPX Cryogenic Probe Station (http://www.lakeshore.com/products/Cryogenic-Probe-Stations/Model-TTPX-Cryogenic-Probe-Station/Pages/Overview.aspx). 42. Nazila Haratipour and Steven J. Koester, Device Research Conference (DRC), (2014).
摘要: 本實驗以掃描光電流顯微術探討二維異質結構,異質結構以兩種層狀材料(SnS2/MoTe2)由機械式剝離法及乾式轉印技術在300nm的SiO2上構成,樣品A為Mote2在下SnS2在上,樣品B則為相反的結構,重合區域長寬約6*6μm2與6*3μm2,高約為各五層材料厚度,為經由電子束微影以及熱蒸鍍製作出鈦金電極(20nm/80nm)。 SnS2在背向閘極呈現n型傳輸行為,而MoTe2呈現雙載子傳輸行為,元件在Vds~1V時有超過4個數量極的開關電流變化,並且經由電流對閘極偏壓曲線,在Vds~1V時可以得到次臨界擺幅(SS)為1.7V/dec,也就是說當等效矽氧化層為5nm時可以達到28mV/dec的SS值,這是因為兩材料皆在次臨界狀態下運作,另一方面結合低溫實驗,可以發現其也存在熱游子運作機制。 經由掃描光電流顯微術搭配633nm雷射檢驗其光電流分布行為,633nm雷射只能激發MoTe2,其雷射解析度為1.5μm圓點,而光點每次可移動0.05μm的距離,結果可以發現其光電流主要分布在MoTe2與MoTe2/ SnS2異質結構之邊界,但主要在MoTe2之上,且可觀察到清晰的空乏區存在,並且可以知道MoTe2/SnS2為一typeⅢ對準的異質結構。 另外比較了MoTe2/SnS2/SiO2及SnS2/MoTe2/SiO2這兩個元件組合情況,其發現了兩者的MoTe2與異質結構的所形成的能帶結構應有所不同,其可能代表著兩者與基板有不同的電荷累積或捕捉現象。
We investigate two dimensional (2D) material heterostructures by scanning photocurrent microscopy. The heterostructure consists of two different layered materials, SnS2 and MoTe2, and is formed by using mechanical exfoliation and dry transfer method on 300 nm SiO2. For sample A, MoTe2 is placed under SnS2; for sample B, MoTe2 is above SnS2. The overlapped region of samples A and B are about 6 × 6 μm2 and 6 × 3 μm2, respectively. The layer number of each material is about 5. The electrodes were made by e-beam lithography and thermal deposition of Ti/Au. Under various back-gate biases, SnS2 is mostly n type and MoTe2 exhibits a bipolar behavior. The TFET device exhibits an ON/OFF ratio over 104 at VDS ~ 1V. The subthreshold swing (SS) obtained from the IDS-VGS transfer curve at VDS ~1V is about 1.7 V/dec, which is equivalent to about 28 mV/dec if the dielectric is scaled down to 5 nm. This is because the device operates in the region where both materials are gated in the subthreshold condition. From temperature dependent data, we found that the devices also inherit thermal activated transport properties. We use a 633nm laser, which excites MoTe2 only, in scanning photocurrent microscopy to investigate the photocurrent distribution. The laser spot size is about 1.5 μm. The scanning step is 0.05μm. The photocurrent is most significant along the boundary of MoTe2 and MoTe2/SnS2 heterojunction and mainly on MoTe2 side. This indicates that there is a clear depletion region at this boundary and the MoTe2/SnS2 junction should possess a type III band alignment. Comparing the transport and scanning photocurrent results of MoTe2/SnS2/SiO2 and SnS2/MoTe2/SiO2 heterostructure devices, we find that the band alignment between the bare MoTe2 and the heterostructure part is different. This could be caused by different charge trapping effect of the layer materials on the substrate for these two structures.
URI: http://hdl.handle.net/11455/96479
文章公開時間: 2019-08-23
顯示於類別:奈米科學研究所

文件中的檔案:
檔案 大小格式 
nchu-106-7104017006-1.pdf6.42 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。