Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96497
標題: Pb-Sn-S固態半導體敏化太陽能電池
Pb-Sn-S solid-state semiconductor-sensitized solar cells
作者: 彭康政
Kang-Cheng Peng
關鍵字: 固態敏化太陽能電池
Pb-Sn-S
solid-state solar cell
引用: [1] Research Cell Record efficiency-chart (from National Renewable Energy Laboratory (USA)) (2017).. [2] H. Wei, Y. Su, S. Chen, Y. Lin, Z. Yang, H. Sun, and Y. Zhang, ' Synthesis of ternary PbxSn1−xS nanocrystals with tunable band gap,' CrystEngComm, 13, 6628-6631 (2011). [3] D. M. Unuchak, K. Bente, G. Kloess, W. Schmitz, V. F. Gremenok, V. A. Ivanov, and V. Ukhov, 'Structure and optical properties of PbS-SnS mixed crystal thin films,' physical status solidi C, 6, 1191-1194 (2009). [4] R. L. Orimi, H. K. Fadafan and A. Asadpour, 'Effect of Sn concentration on optical and structural properties of Pb1-xSnxS nanopowder,' European Physical Journal-Applied Physics, 67 , (2014). [5] R. B. Soriano, C.D. Malliakas,J. Wu and M. G. Kanatzidis, 'Cubic Form of Pb2-xSnxS2 stabilized through size reduction to the Nanoscale,' Journal of the American Chemical Society, 134, 3228-3233 (2012). [6] 曾彥鈞, 國立中興大學物理研究所碩士論文 (2015). [7] 謝昇峰, 國立中興大學奈米科學研究所碩士論文 (2016). [8] 陳又維, 國立中興大學物理研究所碩士論文 (2015). [9] W. H. Nguyen, C. D. Bailie , E. L. Unger and M. D. McGehee, 'Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells,' Journal of the American Chemical Society, 136, 10996-11001 (2014). [10] S. Wang, W. Yuan and Y. S. Shirley , 'Spectrum-Dependent Spiro-OMeTAD Oxidization Mechanism in Perovskite Solar Cells,' ACS Applied Material and Interfaces, 7, 24791-24798 (2015). [11] Y. Gao, E. Talgorn, M. Aerts, M. Tuan Trinh, J. M. Schins, A. J. Houtepen and L. D. A. Siebbelest, 'Enhanced Hot-Carrier Cooling and Ultrafast Spectral Diffusion in Strongly Coupled PbSe Quantum-Dot Solids,' Nano Letters, 11, 5471-5476 (2011). [12] J. Bandara and M. Thelakkat,'Thickness dependence of device parameters in solid state dye sensitized solar cells,' Journal of The National Science Foundation of Sri Lanka, 39, 35-42 (2011). [13] 陳佳靜, 國立中興大學物理所碩士論文 (2008). [14] M. Stolka , J. F. Yanus, and D. M. Pai,'Hole Transport in Solld Solutions of a Diamine in Polycarbonate,' The Journal of Physical Chemistry, 88, 4707-4714 (1984). [15] C. J. Stolle, T. B. Harvey and B. A. Korgel,'Nanocrystal photovoltaics: a review of recent progress,' Current Opinion in Chemical Engineering, 2, 160-167 (2013). [16] S. H. Choi, H. Song, I. K. Park, J. H. Yum, S. S. Kim, S. Lee and Y. E. Sung,' Synthesis of size-controlled CdSe quantum dots and characterization of CdSe-conjugated polymer blends for hybrid solar cells,' Journal of Photochemistry and Photobiology A-Chemistry, 179, 135-141 (2006). [17] R. D. Schaller and V. I. Klimov,'High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion,' Physical Review Letters, 92, 1866011 (2004). [18] 楊惟智, 國立中興大學物理所碩士論文 (2013). [19] R. G. Gordon,'Criteria for Choosing Transparent Conductors,' MRS BULLETIN, 25, 52-57 (2000). [20] L. Kavan and M. Gratzel,'Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis,' Electrochimica Acta, 40, 643-652 (1995) [21] H.J. Snaith and M. Grätzel,'The Role of a 'Schottky Barrier' at an Electron-Collection Electrode in Solid-State Dye-Sensitized Solar Cells', Advanced Materials, 18, 1910-1914 (2006). [22] D. Liu and T. L. Kelly,'Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,' Nature Photonics, 8, 133-138 (2014). [23] I. K. Ding, N. Tetreault, J. Brillet, B. E. Hardin,E. H. Smith, S. J. Rosenthal, F. Sauvage, M. Gratzel and M. D. McGehee,'Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,' Advanced Functional Materials, 19, 2431-2436 (2009).
摘要: 本實驗主要為將三元化合物半導體量子點Pb-Sn-S運用至固態敏化太陽電池中之吸光材料。實驗採用兩階段的連續離子層吸附反應法(SILAR)並經過退火將三元化合物半導體量子點合成於多孔性TiO2薄膜內,最後在填充電洞傳輸層(Spiro-OMeTAD)。 在最佳樣品條件 : PbS(18)/SnS(9) cycles 浸泡時間分別為30 sec / 35 sec得到的最佳轉換效率為0.479 %,開路電壓為0.35 V,短路電流為2.58 mA/cm2,填充因子FF為53.03 %,利用X-ray粉末繞射儀分析所合成出材料的Pb-Sn-S半導體晶相,發現其中可能混雜者鉛及錫的氧化物和硫酸鉛的晶相,並經由UV-Vis Spectroscopy進行分析與計算能隙約為1.54 eV,藉由TEM得知Pb-Sn-S顆粒大小平均約為 10 nm,最後經由FESEM分析電池剖面結構得知吸收層TiO2 + Pb-Sn-S + Spiro - OMeTAD厚度約為1.1 μm,並進行EDS元素分析得到比例約為Pb0.59Sn0.41S。
In this experiment, we applied the Pb-Sn-S QDs as light absorption material for solid-state solar cells. Two-step SILAR (successive ionic layer adsorption and reaction) was used to synthesize the ternary compound QDs into the mesoporous TiO2 followed by filling the HTM (Spiro-OMeTAD). In the best condition : PbS(18)/SnS(9) SILAR cycles ; dipping time 30 sec / 35 sec. We got the best conversion efficiency: 0.479 %, Voc: 0.35 V, Jsc: 2.58 mA/cm2, FF (fill factor): 53.03%. We analyzed the ternary phase Pb-Sn-S by XRD and found that the Pb-Sn-S phase probably mixed with lead oxide, tin oxide, and lead sulfate. UV-vis Spectroscopy analysis the energy gap to be about 1.54 eV. TEM showed the average particle size of Pb-Sn-S to be about 10 nm. The absorption layer (TiO2 + Pb-Sn-S + Spiro – OMeTAD), estimated from FESEM cross-sectional images, is about 1.1 μm. Finally, the atomic ratios based on EDS elemental analysis are approxitae Pb0.59Sn0.41S.
URI: http://hdl.handle.net/11455/96497
文章公開時間: 2020-07-25
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.