Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96506
標題: Sn-Sb-S半導體作為光敏化劑製作量子點敏化太陽能電池
Sn-Sb-S liquid-junction semiconductor-sensitized solar cells
作者: 辛哈利
Harrys Samosir
關鍵字: 液態敏化太陽能電池
Sn-Sb-S量子點
liquid junction sensitized solar cells
Sn-Sb-S semiconductor quantum dots (QDs)
引用: [1] Solar Photovoltaic, [online] available https://en.wikipedia.org/wiki/Photovoltaic_effect [2] Nelson, Jenny, The Physics of Solar cells, United Kingdom: Imperial College Press, p.2-15 (2003). [3] https://www.techopedia.com/definition/14995/photovoltaic-cell-pv-cell [4] A.M Bagher, M.M Abadi, and M.Mohsen, Types of Solar Cells and Application, American Journal of Optics and Photonics, Vol. 3, No. 5, 94-113 (2015). [5] J.Tian, and G.Cao, Semiconductor quantum dot-sensitized solar cells, Nano Reviews, Vol 4, 22578 (2013). [6] Y. Wang, N. Peng, H. Li, and X. Bai, High-Efficiency CdS Quantum-Dots Sensitized Solar Cells with Compressed Nanocrystalline TiO2 Photoelectrodes, Journal of Nanomaterials, Volume 2012, 858693 (2012). [7] S. Abdallah, N. Al-Hosiny, and A. Badawi, Photoacoustic Study of CdS QDs for Application in Quantum-Dot-Sensitized Solar Cells, Journal of Nanomaterials, Volume 2012, 498286 (2012). [8] H.J. Lee, H.C. Leventis, S.J. Moon, P.Chen, S. Ito, S.A. Haque, T.Torres, F.Nüesch, T.Geiger, S.M. Zakeeruddin, M.Grätzel, M.K.Nazeeruddin, PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells: 'Old Concepts, New Results', Advanced Functional Material, Volume 19, Issue 17, 2735–2742 (2009). [9] Y.C.Chang, N. Suriyawong, B. A. Aragaw, J.B. Shi, P.Chen, M.W.Lee, Lead antimony sulfide (Pb5Sb8S17) solid-state quantum dot-sensitized solar cells with an efficiency of over 4%, Journal of Power Sources, 312 ,86-92(2016). [10] D. Abdelkader, M.B Rabeh, N.Khemiri, and M. Kanzari, Investigation on optical properties of SnxSbySz sulfosalts thin films. Journal of Materials Science in Semiconductor Processing, 14–19, 21 (2014). [11] H. Dittrich, A. Stadler, D. Topa, H.J. Schimper, and A. Basch, Progress in sulfosalt research, Journal Phys Status Solidi A, 206, No. 5, 1034–1041 (2009). [12] Y. Fadhli, A. Rabhi1, and M. Kanzari, Optical Constant and Electrical Resistivity of Annealed Sn3Sb2S6 Thin Films, The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg, (2016). [13] J. Tian and G. Cao. Semiconductor quantum dot-sensitized solar cells. Journal Nano Reviews, Volume 4 (2013). [14] P. P. K. SMITH, Structure Determination of Diantimony Tritin Hexasulphide, Sn3Sb2S6, by High-Resolution Transmission Electron Microscopy, Journal Acta Cryst. C40, 581-584 (1984). [15] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, 32, 33-177(2004). [16] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1, 1–21(2000). [17] U. Diebold, The surface science of Titanium dioxide, Surface Science Reports, 48, 53-229 (2003). [18] H.M. Pathan And C.D.Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Journal Bulletin of Materials Science, Vol. 27, No. 2, 85–111 (2004). [19] F. Huang, Q. Zhang, B.X. Juan Hou, C.Y. Wang, R. Masse, S. Peng, J. Liu and G. Cao, A comparison of ZnS and ZnSe passivation layers on CdS/CdSe cosensitized quantum dot solar cells. J. Mater. Chem. A,4, 14773-14780 (2016). [20] X.M.Fang, T.L. Ma, G.Q.Guan, M. Akiyama, T. Kida, E. Abe, Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, Journal of Electroanalytical Chemistry, 570, 257–263 (2004). [21] P.Sudhagar, E.J. Juaraz-Perez, Y.S.Kang, and Ivan, Mora-Sero, Quantum Dot-Sensitized Solar Cells, Low-cost Nanomaterials, DOI:10.1007/978-1-4471-6473-9-5, Springer-Verlag: London (2014). [22] C. Riordan and R. Hulstrom, What Is An Air Mass 1.5 Spectrum?, IEEE, 0160-8371/90/0000-1085, 1085-1088 (1990). [23] A.Tubtimtae and M.W.Lee, Synthesis, optical and photovoltaic properties of silver chalcogenides-Ag2S and Ag2Se quantum dots as sensitizers for solar cells application, A Dissertation, Department of Physics and Institute of Nanoscience, National Chung Hsing University (2011). [24] P. Wang, S.M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Grätzel, Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals, The Journal of Physical Chemistry letters, 107, 14336-14341 (2003). [25] S. Horea, C. Vetter, R. Kerna, H.Smit, A.Hinsch, Influence of scattering layers on efficiency of dye-sensitized solar cells, Solar Energy Materials & Solar Cells, 90, 1176 –1188 (2006). [26] D.J. Kwak, B.H. Moon, D.K. Lee, C.S. Park and Y.M. Sung, Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application, Journal of Electrical Engineering & Technology Vol. 6, No. 5, 684 - 687 (2011). [27] A. Hauch and A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Journal electrochimica Acta, 46 3457–3466, (2001). [28] https://www.newport.com/t/introduction-to-solar-radiation [29] Lee-Ping. Sn-Sb-S liquid-junction semiconductor-sensitized solar cells. National Chung Hsing University.2016. [30] Ne´stor Guijarro, J.M. Campin, Qing Shen, Taro Toyoda, Teresa Lana-Villarreala and Roberto Go´mez, Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells, Journal Phys. Chem., 13, 12024–12032 (2011). [31] Siti Utari Rahayu, Chia-Ling Chou, Nipapon Suriyawong, Belete Asefa Aragaw, Jen-Bin Shi, and Ming-Way Lee, Sodium antimony sulfide (NaSbS2): Turning an unexpected impurity into a promising, environmentally friendly novel solar absorber material, Journal Apl Materials 4, 116103 (2016). [32] Michael Grätzel, Photoelectrochemical cells, Nature, 414, 338-344 (2001). [33] H.selhoferr, Vacum thin film, agust, 15 (1999). [34] V. Baglio, M. Girolamo, V. Antonucci, A. S. Aricò. Influence of TiO2 Film Thickness on the Electrochemical Behaviour of Dye-Sensitized Solar Cells. Int. J. Electrochem. Sci., 6, 3375 – 3384 (2011). [35] A. Dakkaa, J. Lafaitb, M. Abd-Lefdila and C. Sellab, Optical study of titanium dioxide thin films prepared by R.F. sputtering, Journal M.J.Condensed Matter, Volume 2, Number 2 (1999). [36] Xiaodan Cui, Wangwang Xu, Zhiqiang Xie and Ying Wang, High-performance dye-sensitized solar cells based on Ag-doped SnS2 counter electrodes, J. Mater. Chem. A, 4, 1908-1914 (2016). [37] R. Ahmed, L. Zhao, A. J. Mozer, G. Will, J. Bell and H. Wang, J. Phys. Chem. C, 119, 2297-2307 (2015). [38] X. Wang, R. Liu, T. Wang, B. Wang, Y. Xu and H. Wang, Acs Appl. Mater. Interfaces, 5, 3312-3316 (2013).
摘要: Sn-Sb-S 液態敏化太陽能電池藉由SILAR法合成Sn-Sb-S量子點經由本實驗進行探討。最佳樣品條件為: SnS 8 cycles / SbS 6 cycles 並在氮氣下進行325 ℃ ,12 分鐘的退火流程,並且以多碘(I-/I3-)當作電解液,白金(Pt)當作對電極。 由XRD分析及TEM分析證明Sn-Sb-S確實生長在孔隙型(mp)-TiO2中,其顆粒大小約為 23 nm 。並經由UV-VIS 光譜儀分析,附加一層ZnSe passivation在最佳樣品條件下製作的成品,其能隙為 1.38 eV而其吸收範圍為300 – 850 nm。 在表現最佳的ZnSe passivation layer電池中,在一個太陽光源強度下所得到的轉換效率為 2.58 %,其短路電流 Jsc 為 14.04 mA/cm2,開路電壓 Voc為 0.46 V,FF (Fill factor)為39.91 % 。 當光源強度降低至0.05個太陽光時,所得到的轉換效率為4.89 %,短路電流為 1.36 mA/cm2 (歸一化後為27.2 mA/cm2)。 最後經由EQE量測得到,在波長為500 nm時轉換效率可達72%。
Tin antimony sulfide as a sensitizer for liquid junction sensitized solar cells has been investigated. Sn-Sb-S semiconductor quantum dots (QDs) were grown by using the successive ionic layer adsorption and reaction (SILAR) method. The best condition for the growth process is 8 cycles for Sn-S and 6 cycles for Sb-S annealing at 325 ℃ for 12 min in N2, using polyiodide (I-/I3-) as the electrolyte, and platinum (Pt) the as counter electrode. The X-Ray diffaction (XRD) patterns and transmission electron microscope (TEM) images confirmed that Sn-Sb-S was successfully grown into mesoporous (mp)-TiO2 with a particle size of ~23 nm. UV-Visible measurements showed that Sn-Sb-S grown using the best condition with ZnSe passivation layer has an energy gap of 1.38 eV which covers 300-850 nm of the optical wavelength. The best cell with a ZnSe passivation layer yielded a short-circuit current density Jsc of 14.04 mA/cm2, an open-circuit voltage Voc of 0.46 V, a fill factor FF of 39.91%, and a power conversion efficiency η of 2.58% under 1 sun. At the reduced light intensity of 0.05 sun, the η increased 4.89% with Jsc = 1.36 mA/cm2 (which could be normalized to 27.2 mA/cm2 ). The external quantum efficiency (EQE) spectrum covered the spectral range of 300–850 nm with a maximal EQE = 72% at λ = 500 nm.
URI: http://hdl.handle.net/11455/96506
文章公開時間: 2020-08-01
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.