Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96514
標題: 不同嫩度台灣土雞股二頭肌之蛋白質表現差異
Differential protein expression in Biceps femoris muscles with different tenderness in Taiwan country chickens
作者: 吳鍺湘
Che-Hsiang Wu
關鍵字: 股二頭肌
嫩度
台灣土雞
蛋白質體
Biceps femoris muscle
tenderness
proteome
Taiwan country chickens
引用: 行政院農業委員會。2016。畜禽統計調查結果:105年第3季各類畜禽飼養場數及在養量-按品項別分。http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx 李淵百、黃輝煌。1988。台灣土雞育種。中畜會誌17:29-47。 陳志峰、李淵百、范揚廣、黃三元、黃暉煌。1994。臺灣土雞種原保存。中畜會誌 23:339-346。 陳明造。肉品加工理論與應用。2014。藝軒圖書公司。新北市。 楊泠泠、翁嘉駿、陳志峰、李淵百。1995。台灣土雞的育種與相關研究。畜產學 報24:73-80。 陳欣怡。2015。外觀體型、飼養週齡及飼料種類對雞隻屠體、肉質及感官品評之影響。碩士論文。中興大學。台中市。 戴 謙、鍾秀枝、黃祥吉、張秀鑾、黃鈺嘉、劉瑞珍。1995。台灣土雞之近親育種:Ⅰ. 全同胞近親對生長性能之影響。中畜會誌21:421-433。 戴 謙、黃祥吉、鍾秀枝、張秀鑾、鄭裕信、劉瑞珍。1996a。台灣土雞之近親育種:Ⅱ. 全同胞近親對產蛋性能之影響。中畜會誌25:287-295。 戴 謙、張秀鑾、鍾秀枝、黃祥吉。1996b。台灣土雞之近親育種:Ⅲ. 近親品系間雜交對生長及產蛋性能之影響。中畜會誌25:451-465。 林德育、賴永裕、蔡秀容、林秀蓮、吳明哲。2014。畜試土雞高產蛋品系近親係數分析。中畜會誌43:147。 Alnahhas, N., E. L. Bihan-Duval, E. Baéza, M. Chabault, P. Chartrin, T. Bordeau, E. Cailleau-Audouin, K. Meteau, and C. Berri. 2015. Impact of divergent selection for ultimate pH of pectoralis major muscle on biochemical, histological, and sensorial attributes of broiler meat. J. Anim. Sci. 93:4524-4531. Anderson, M. J., S. M. Lonergan, C. A. Fedlerb, K. J. Prusab, J. M. Binninga, and E. Huff-Lonergan. 2012. Profile of biochemical traits influencing tenderness of muscles from the beef round. Meat Sci. 91:247-254. Anderson, M. J., S. M. Lonergan, and E. Huff-Lonergan. 2014. Differences in phosphorylation of phosphoglucomutase 1 in beef steaks from the longissimus dorsi with high or low star probe values. Meat Sci. 96:379-384. Barnard, E. A., J. M. Lyles, and J. A. Pizzey. 1982. Fibre types in chicken skeletal muscles and their changes in muscular dystrophy. J. Physiol. 331:333-354. Barter, P. 2005. The role of HDL-chelesterol in preventing atherosclerotic disease. Eur. Heart J. Suppl. 7:F4-F8. Beauclercq, S., L. Nadal-Desbarats, C. Hennequet-Antier, A. Collin, S. Tesseraud, M. Bourin, E. L. Bihan-Duval, and C. Berri. 2016. Serum and muscle metabolomics for the prediction of ultimate pH, a key factor for chicken-meat quality. J. Proteome Res. 15:1168-1178. Bouley, J., C. Chambon, and B. Picard. 2004. Mapping of bovine skeletal muscle proteins using two-dimensinal gel electrophoresis and mass spectrometry. Proteomics. 4:1811-1824. Cassar-Malek, I., N. Guillemin, J. F. Hocquette, D. Micol, D. Bauchart, B. Picard, and C. Jurie. 2011. Expression of DNAJA1 in bovine muscles according to developmental age and management factors. Animal 5:867-874. Choi, Y. M., S. H. Lee, J. H. Choe, M. S. Rhee, S. K. Lee, S. T. Joo, and B. C. Kim. 2010. Protein solubility is related to myosin isformss, muscle fiber types, meat quality traits, and postmortem protein changes in porcine longissimus dorsi muscle. Livest. Sci. 127:183-191. Chumngoen, W., and F. J. Tan. 2015. Relationships between descriptive sensory attributes and physicochemical analysis of broiler and Taiwan native chicken breast meat. Asian-Australas J. Anim. Sci. 28:1028-1037. Chumngoen, W, C. F. Chen, and H. Y. Chen, and F. J. Tan. 2016. Influences of end-point heating temperature on the quality attributes of chicken meat. Br. Poult. Sci. 57:740-750. Culioli, J. 1995. Meat tenderness: Mechanical assessment. Ecceamst. Utrecht. The Netherlands. D'Alessandro, A., C. Marrocco, S. Rinalducci, C. Mirasole, S. Failla, and L. Zolla. 2012. Chianina beef tenderness investigated through integrated Omics. J. Proteomics. 75:4381-4398. D'Alessandro, A., C. Marrocco, V. Zolla, M. D΄Andrea, and L. Zolla. 2011. Meat quality of the longissimus lumborum muscle of Casertana and LargeWhite pigs: Metabolomics and proteomics intertwined. J. Proteomics. 75:610 -627. D'Alessandro, A., and L. Zolla. 2013. Meat science: From proteomics to integrated omics towards system biology. J. Proteomics 78:558-577. Davey, C. L., and R. J. Winger 1988. Muscle to meat in meat science, milk science and technology-chapter 1. World animal science B3. Elsevier. Amsterdam. Desai, M. A., V. Jackson, W. Zhai, S. P. Suman, M. N. Nair , C. M. Beach, and M. W. Schilling. 2016. Proteome basis of pale, soft, and exudative-like (PSE-like) broiler breast (Pectoralis major) meat. Poult. Sci. 95:2696-2706. Doherty, M. K., L. McLean, J. R. Hayter, J. M. Pratt, D. H. L. Robertson, A. El-Shafei, S. J. Gaskell, and R. J. Beynon. 2004. The proteome of chicken skeletal muscle: Changes in soluble protein expression during growth in a layer strain. Proteomics 4:2082-2093. Dubowitz, V. and A. G. E. Pearse. 1960. Reciprocal relationship of phosphorylase and oxidative enzymes in skeletal muscle. Nature 185:701-702. Elminowska-Wenda, G. 2007. Structure of skeletal muscles in leghorn type chicken from conservative and parent flocks. Folia Biol. 55:3-4. Fletcher, D. L. 2002. Poultry meat quality. Worlds. Poult. Sci. J. 8:131-145. Foegeding, E. A. and T. C. Lanier. 1996. Characteristic of edible muscle tissues. Food Chemistry. Marcel Dekker. New York. Fontanesia, L., R. Davolia, N. L. Costaa, F. Berettia, E. Scottia, M. Tazzolia, F. Tassonea, M. Colomboa, L. Buttazzonib, and V. Russoa. 2008. Investigation of candidate genes for glycolytic potential of porcine skeletal muscle: Association with meat quality and production traits in Italian large white pigs. Meat Sci. 80:780-787. Grashorn, M. A. 2010. Research into poultry meat quality. Br. Poult. Sci. 52:60-67. Guillemin, N., M. Bonnet, and B. Picard. 2011a. Functional analysis of beef tenderness. J. Proteomics 75:352-365. Guillemin, C. J., I. Cassar-Malek, J. F. Hocquette, G. Renand, and B. Picard. 2011b. Variations in the aboundance of 24 protein biomarkers of beef tenderness according to muscle and animal type. Animal 5:885-894. Hamelin, M., T. Sayd, C. Chambon, J. Bouix, B. Bibe´, D. Milenkovic, H. Leveziel, M. Georges, A. Clop, P. Marinova, and E. Laville. 2014. Proteomic analysis of ovine muscle hypertrophy. J. Anim. Sci. 4:3266-3276. Hemmer, W., M. Skarli, J. C. Perriard, and T. Wallimann. 1993. Effect of okadaic acid on protein phosphorylation patterns of chicken myogenic cells with special reference to creatine kinase. FEBS Lett. 327:35-40. Heslbeck, M., A. Miess, T. Stromer, S. Walter, and J. Buchner. 2005. Disassembvling protein aggregates in the yeast cytosol. The coopperation of Hsp26 with Ssa1 and Hsp104. J. Biol. Chem. Discipline 280:23861-23868. Huang, S., N. L. Taylor, R. Narsai, H. Eubel, J. Whelan, and A. H. Millar. 2010. Functional and composition differences between mitochondrial complex II in Arabidopsis and rice are correlated with the complex genetic history of the enzyme. Plant Mol. Biol. 72:331-342. Huff-Lonergan, E., W. Zhang, and S. M. Lonergan. 2010. Biochemistry of postmortem muscle-lessons on mechanisms of meat tenderization. Meat Sci. 86:184-195. Hwang, I. H., B. Y. Park, J. H. Kim, S. H. Cho, and J. M. Lee. 2005. Assessment of postmortem proteolysis by gel-based proteome analysis and its relationship to meat quality traits in pig longissimus. Meat Sci. 69:79-91. Joseph, P., M. N. Nair, and S. P. Suman. 2015. Application of proteomics to characterize and oxidative stability of muscle foods. Food Res. 76:938-945. Kemp, C. M., and Parr T. 2012. Advances in apoptotic mediated proteolysis in meat tenderization. Meat Sci. 92:252-259. Khan, A. W. 1962. Extraction and fractionation of proteins in fresh chicken muscle. J. Food Sci. 27:430-434. Lametsch, R., P. Roepstorff, and E. Bendixen. 2002. Identification of protein degradation during post-mortem storage of pig meat. J. Agric. Food Chem. 50:5508-5512. Lametsch, R., A. Karlsson, K. Rosenvold, H. J. Andersen, P. Roepstorff, and E. Bendixen. 2003. Postmortem proteome changes of porcine muscle related to tenderness. J. Agric. Food Chem. 51:6992-6997. Laville, E., T. Sayd, M. Morzel, S. Blinet, C. Chambon, J. Renand, G. Renand, and J. F. Hocquette. 2009. Proteome changes during meat aging in tough and tender beef suggest the importance of apoptosis and protein solubility for beef ageing and tenderization. J. Agric. Food Chem. 57:10755-10764. Lee, B. N. 1952. Poultries in Taiwan. Resources of livestocks and poultries in Taiwan. Symposium COA/INRA Scientific Cooperation in Agriculture, Tainan, Taiwan, R.O.C. Lee, Y. P. 1990. Development and improvement of local chicken in Taiwan. Proc. 5th AAAP Animal Sci. Cong., Taipei, Taiwan. 1:349-353. Lee, Y. P. 2006. Taiwan country chicken: a slow growth breed for eating quality. Symposium COA/INRA Scientific Cooperation in Agriculture, Tainan, Taiwan. Lee, Y. S., C. M. Owens, and J. F. Meullenet. 2009. Changes in tenderness, color, and water holding capacity of broiler breast meat during postdeboning aging. J. Food Sci. 74:449-454. Lefaucheur, L. 2010. A second look into fibre typing-Relation to meat quality. Meat Sci. 84:257-270. Lepetit, J., A. Grajales, and R. Favier. 2000. Modelling the effect of sarcomere length on collagen thermal shortening in cooked meat: Consequence on meat toughness. Meat Sci. 54:239-250. Lepetit, J. 2007. A theoretical approach of the relationships between collagen content, collagen cross-links and meat tenderness. Meat Sci. 76:147-159. Li, C., D. Wang, W. Xu, F. Gao, and G. Zhou. 2013. Effect of final cooked temperature on tenderness, protein solubility and microstructure of duck breast muscle. LWT–Food Sci. Technol. 51:266-274. Light, N., A. E. Champion, C. Voyle, and A. J. Bailey. 1985. The role of epimysial, perimysial and endomysial collagen in determining texture in six bovine muscles. Meat Sci. 13:137-149. Listrat, A., B. Lebret, I. Louveau, T. Astruc, M. Bonnet, L. Lefaucheur, B. Picard, and J. Bugeon. 2016. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016:3182746 Liu, J., R. Fu , R. Liu, G. Zhao, M. Zheng, H. Cui, Q. Li, J. Song, J. Wang, and J. Wen. 2016. Protein profiles for muscle development and intramuscular fat accumulation at different post-hatching ages in chickens. PLoS ONE 11:e0159722. Liu, X. D., D. D. Jayasena, Y. Jung, S. Jung1, B. S. Kang, K. N. Heo, J. H. Lee, and C. Jo. 2012. Differential proteome analysis of breast and thigh muscles between Korean native chickens and commercial broilers. Asian-Australas. J. Anim. Sci. 6:895-902. Liu, A., T Nishimura, and K. Takahashi. 1996. Relationship between structural properties of intramuscular connective tissue and toughness of various chicken skeletal muscles. Meat Sci. 43:43-49. Lonergan, E. H., W. Zhang, and S. M. Lonergan. 2010. Biochemistry of postmortem muscle:Lessons on mechanisms of meat tenderization. Meat Sci. 86:184-195. Luca, A. D., G. Elia, A. M. Mullen, and R. M. Hamill. 2013. Monitoring postmortem changes in porcine muscle through 2D-DIGE proteome analysis of Longissimus muscle exudates. Proteome Sci. 11:9. Luca, A. D., A. M. Mullen, G. Elia, G. Davey, and R. M. Hamill. 2010. Centrifugal drip is an accessible source for protein indicators of pork ageing and water-holding capacity. Meat Sci. 88:261-270. Lyon, C. E., and B. G. Lyon. 1990. The relationship of objective shear values and sensory tests to change in tenderness of broiler breast meat. Poult. Sci. 69:1420-1427. Lyon, B. G. and C. E. Lyon. 2001. Poultry meat processing. CRC press. New York. U.S.A. Maltin, Charlotte, D. Balcerzak, R. Tilley, and M. Delday, 2003. Determinants of meat quality: tenderness. Proc. Nutr. Soc. 62:337-347. Marino, R., A. d. Malva, and M. Albenzio. 2014. Proteolytic changes of myofibrillar proteins in Podolian meat during aging: focusing on tenderness. J. Anim. Sci. 93:1376-1387. Marques, C., W. Guo, P. Pereira, A. Taylor, C. Patterson, P. C. Evans, and F. Shang. 2006. The triage of damaged proteins: degradation by the ubiquitin-proteasome pathway or repair by molecular chaperones. FASEB J. 20:741-743. Mekchay S., T. Teltathum, S. Nakasathien, and P. Pongpaichan. 2010. Proteomic analysis of tenderness trait in Thai native and commercial broiler chicken muscles. J. Poult. Sci. 47:8-12. Meyer, R. A. and J. M. Foley. 1996. Cellular processes integrating the metabolic response to exercise. Handbook of physiology, Am. Physiol. Soci. pp. 841-869. doi:10.1002/cphy.cp120118. Muroya, S., S. Kitamura, S. Tanabe, T. Nishimura, I. Nakajima, and K. hikuni. 2004. N-terminal amino acid sequences of troponin T fragments, including 30 kDa one, produced during postmortem aging of bovine longissimus muscle. Meat Sci. 67:19-24. Ohelndieck, K. 2010. Proteomics of skeletal muscle glycolysis. Biochim. Biophys. Acta 1804:2089-2101. Okumura T, R. Yamada, and T. Nishimura. Survey of conditioning indicators for pork loins: changes in myofibrils, proteins and peptides during postmortem conditioning of vacuum-packed pork loins for 30 days. Meat Sci. 64:467-473. Ouali, A. 1992. Proteolytic and physicochemical mechanisms involved in meat texture development. Biochimie. 74:251-265. Owens, C. M., L. C. Cavitt, and J. F. C. Meullenet. 2004. Tenderness evaluation in poultry meat. 57th American Meat Science Association Reciprocal Meat Conference. Lexington, Kentucky, U.S.A. pp. 115-121. Paredia, G., S. Rabonia, E. Bendixend, A. M. de Almeidaf, and A. Mozzarelli. 2012. 'Muscle to meat' molecular events and technological transformations: The proteomics insight. J. Proteome Res. 75:4275-4289. Pan, S., H. Zhang, J. Rush, J. Eng, N. Zhang, D. Patterson, M. J. Com, and R. Aebersold. 2005. High throughput proteome screening for biomarker detection. Mol. Cell Proteomics 4:182-190. Peter, J. B., R. J. Barnard, V. R. Edgerton, C. A. Gillespie, and K. E. Stempel. 1972. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11:2627-2633. Pearson, A. M., and R. B. Young. 1989. Muscle and Meat Biochemistry. Academic Press. San Diego. California. U.S.A. Phongpa-Ngan P, A. Grider, J. H. Mulligan, S. E. Aggrey, and L. Wicker. 2011. Proteomic analysis and differential expression in protein extracted from chicken with a varying growth rate and water-holding capacity. J. Agric. Food Chem. 59:13181-13187. Picard, B., M. P. Duris, and C. Jurie. 1998. Classification of bovine muscle fibres by different histochemical techniques. Histochem. J. 30:473-479. Polati, R., M. Menini, E. Robotti, R. Millioni, E. Marengo, E. Novelli, S. Balzan, and D. Cecconi. 2012. Proteomic changes involved in tenderization of bovine Longissimus dorsi muscle during prolonged ageing. Food Chem. 135:2052-2069. Qiu, H. F., S. H. Zhao, X. W. Xu, M. Yerle, and B. Liu. 2008. Assignment and expression patterns of porcine muscle specific isoform of phosphoglycerate mutase gene. J. Genet. Genomics 35:257-260. Rammouz, R. E, C. Berri, E. Le Bihan-Duval, R. Babile, and X. Fernandez. 2007. Breed differences in the biochemical determinism of ultimate pH in breast muscles of broiler chickens-A key role of AMP deaminase. Poult. Sci. 83:1445-1451. Rathgeber, B. M. 2000. Postmortem changes in meat quality and myofibrillar degradation in turkey breast muscle. PhD Thesis. University of Saskatchewan. Saskatoon. Canada. Rees, M. P., G. R. Trout, and R. D. Warner. 2003. The influence of the rate of pH decline on the rate of ageing for pork II: Interaction with chilling temperature. Meat Sci. 65:805-818. Rigiani, N. R., R. A. Wevers, E. Rijk, and J. B. Soons. 1987. Postsynthetic modification of human enolase isoenzymes. Clin. Chem. 33:757-760. Romao, J. M., M. L. He, T. A. McAllister, and L. L. Guan. 2014. Effect of age on bovine subcutaneous fat proteome: Molecular mechanisms of physiological variations during beef cattle growth. J. Anim. Sci. 92:3316-3327. Rosenvold, K., U. Borup, and M. Therkildsen. 2010. Stepwise chilling - Tender pork without compromising water-holding capacity. J. Anim. Sci. 88:1830-1841. Salwani, M. S., K. D. Adeyemi, S. A. Sarah, J. Vejayan, I. Zulkifli, and A. Q. Sazili. 2015. Skeletal muscle proteome and meat quality of broiler chickens subjected to gas stunning prior slaughter or slaughtered without stunning. CyTA J. Food. 14:375-381. Scheffler, T. L., S. Park, and D. E. Gerrard. 2011. Lessons to learn about postmortem metabolism using the AMPKγ3 (R200Q) mutation in the pig. Meat Sci. 89:244-250. Schreurs, F. J. G. 2000. Post-mortem changes in chicken muscle. Worlds Poult. Sci. J. 56:319-346. Sims, T. J. and A. J. Bailey. 1981. In developments in meat science. Volume 2. Applied Science Publishers. Lond. U.K. Smith, D. M. 2001. Poultry meat processing. CRC Press. New York. U.S.A. Smith, D., and J. Northcutt 2009. Pale poultry muscle syndrome. Poult. Sci. 88:1493-1496. Solem C., Koebmann B. and Jensen P. R. 2008. Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis. IET System Biol. 2:64-72. Swatland, H. J. 1994. Structure and development of meat animals and poultry. CRC press. New York. U.S.A. Szalata, M., E. Pospiech, M. L. Greaser, M. L. Greaser, A. £yczyñski, B. Grze?, and B. Mikoajczak. Titin and troponin T changes in realtion to tenderness of meat from pigs of various meatiness. Pol. J. Food Nutr. Sci. 14:139-144. Tanaka, M., K. Maeda, and K. Nakashima. 1995. Chicken alpha-enolase but not beta-enolase has a Src-dependent tyrosine-phosphorylation site: cDNA cloning and nucleotide sequence analysis. J. Biochem. 117:554-559. Teltathum, T., and S. Mekchay. 2009. Proteome changes in Thai indigenous chicken muscle during growth period. Int. J. Biol. Sci. 5:679-685. Teltathum, T., and S. Mekchay. 2010. Relationships between pectoralis muscle proteomes and shear force in Thai indigenous chicken meat. Nat. Sci. 44:53-60. Updike, M. S., H. N. Zerby, M. S. Sawdy, G. Kaletunc, and M. P. Wick. 2005. Turkey breast meat functionality differences among turkeys selected for body weight and/or breast yield. Meat Sci. 71:706-712. Uscebrka, G., D. Zikic, and S. Stojanovic. 2006. Histochemical characteristics of breast and leg muscles in farm bred partridges (Perdix Perdix L.). J. Cent. Eur. Agric. 14:378-387. van Laack, R. L. J. M., S. G. Stevens, and K. J. Stalder. 2001. The influence of ultimate pH and intramuscular fat content on pork tenderness and tenderization. J. Anim. Sci. 79:392-397. Warner, R. D., P. L. Greenwood, D. W. Pethick, and D. M. Ferguson. 2010. Genetic and environmental effects on meat quality. Meat Sci. 86:171-183. Warriss, P. D. 2000. Meat science. CABI. New York. U.S.A. Wattanachant, S., S. Benjakul, and D. A. Ledward. 2004. Composition, colour and texture of Thai indigenous and broiler chicken muscles. Poul. Sci. 83:123-128. Wattanachant, S., S. Benjakul, and D. A. Ledward. 2005a. Effect of heat treatment on changes in texture, structure and properties of Thai indigenous chicken muscle. Food Chem. 93:337-348. Wattanachant, S., S. Benjakul, and D. A. Ledward. 2005b. Microstructure and thermal characteristics of Thai indigenous and broiler chicken muscles. Poult. Sci. 84:328-36. Wojtysiak, D. 2013. Effect of age on structural properties of intramuscular connective tissue, muscle fibre, collagen content and meat tenderness in pig longissimus lumborum muscle. Folia Biol-Prague 61:221-226. Xing, T., M. F. Wang, M. Y. Han, X. S. Zhu, X. L. Xu and G. H. Zhou. 2017. Expression of heat shock protein 70 in transport-stressed broiler pectoralis major muscle and its relationship with meat quality. Animal In press. doi:10.1017/S1751731116002809. Zannis, V. I., Chroni A, and Krieger M. 2006. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J. Mol. Med. (Berl.). 84:276-294. Zapata, I., J. Redish, M. Miller, M. Lilburn, and M. Wick. 2012. Comparative proteomic characterization of the sarcoplasmic protein in the pectoralis major and supracoracoideus breast muscle in 2 chicken genotype. Poult. Sci. 91:1654-1659. Zhang, M., D. Wang, Z. Geng, C. Sun, H Bian, W. Xu, Y. Zhu, and P. Li. 2017. Differential expression of heat shock protein 90, 70, 60 in chicken muscles postmortem and its relationship with meat quality. Asian-Australas J. Anim. Sci. 30:94-99. Zheng, A., J. Luo, K. Meng, J. Li, S. Zhang, K. Li, G. Liu, H. Cai, W. L. Bryden, and B. Yao. 2015. Proteome changes underpin improved meat quality and yield of chickens (Gallus gallus) fed the probiotic Enterococcus faecium. BMC Genomics 15:1167. Zietkiewicz, S., J. Krzewska, and K. Liberek. 2004. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem. 279:44376-44383. Zot, A. S., and J. D. Potter. 1987. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Ann. Rev. Biophys. Biophys. Chem. 16:535-559.
摘要: 台灣土雞之肉質具有豐富的風味與嚼勁,受到消費者的喜好,在市場上有重要的地位。嫩度(tenderness)是消費者購買肉品時考慮的重要因素之一,直接影響消費者接受度。蛋白質體技術(proteomic technology)應用於肉品科學中,多在改善牛肉與豬肉品質,但應用於禽肉之研究甚少,故本研究之目的在探討不同嫩度台灣土雞股二頭肌(Biceps femoris)之蛋白質差異表現,以期作為改善土雞肉品質之參考生物標誌。試驗使用16與20週齡畜試土雞近親品系L11各10隻,屠宰後取其股二頭肌,測定截切值、膠原蛋白含量及可溶性膠原蛋白百分比等與嫩度相關之性狀,將數值依加權公式計算後得到之嫩度排名,各取前後三名肌肉樣品進行蛋白質體分析。二維電泳分析結果顯示定量分析的355個蛋白質點中,有69個點在不同嫩度的樣品表現量具顯著差異。胜肽質量指紋分析(peptide mass fingerprinting)可成功鑑定其中66個點之身分,其分屬於40個不同蛋白質,此差異表現蛋白質主要位於細胞質(35%)與細胞骨架(13%),與蛋白質結合(23%)、及離子結合(18%)等分子功能有關,且參與代謝(23%)及生物調節(18%)等生物過程。16週齡雞隻股二頭肌之phosphoglucomutase-1、phosphoglycerate mutase 1、aconitate hydratase及triosephosphate isomerase在嫩度較高者表現量較高;20週齡雞隻股二頭肌之pyruvate kinase在嫩度較高者表現量較高,這些蛋白質皆與糖解代謝有關。不同週齡雞隻間之beta-enolase、desmin及skeletal myosin heavy chain在嫩度較高的組別表現量較高,這些蛋白質主要參與能量代謝與肌肉結構變化,故推測可能會影響屠宰後肌肉轉變為肉過程之變化。綜合本研究結果可推測台灣土雞股二頭肌嫩度可能與糖解代謝及肌肉結構相關之蛋白質有關。
Taiwan country chickens (TCCs) which have intense flavors and superior textures satisfy the preference of consumers, and play an important role in the poultry market. Tenderness is one of the most important meat characteristics for the consumers, thus affect the acceptability of products to the consumers. Most proteomic studies in meat science focus on the factors affecting the meat quality of cattles and pigs, whereas few studies concern about chicken meat quality. Therefore, the current study was to investigate the differential protein expressions in thigh (Biceps femoris) muscles of TCCs with different tenderness and to explore the candidate biomarkers for improving meat characteristics in chickens. The B. femoris muscles from male Livestock Research Institute line 11 (LRI L11) at 16- and 20-wk-age were applied. The tenderness of B. femoris muscles was determined by measuring the shear force, collagen content, and soluble collagen percentage and ranked by different formulas. The B. femoris muscles with superior and worst three tenderness respectively were subjected to further proteomic analysis. The results show that there were 69 protein spots expressed differentially among all the 355 quantified protein spots. A total of 66 differentially expressed protein spots were identified by peptide mass fingerprinting and belonged to the 40 different proteins. These differentially expressed proteins which mainly located in cytoplasm (35%) and cytoskeleton (13%), involved in the molecular functions of protein binding (23%) and ion binding (18%). Most of them were participated in the biological processes of metabolic process (23%) and biological regulation process (18%). Phosphoglucomutase-1, phosphoglycerate mutase 1, aconitate hydratase, and triosephosphate isomerase were significantly upregulated in B. femoris muscles with higher tenderness in 16-wk-old TCCs. Pyruvate kinase was significantly upregulated in B. femoris muscle with higher tenderness in 20-wk-old TCCs. These proteins were related to glycolysis. Beta-enolase, desmin, and skeletal myosin heavy chain, which participated in energy metabolism and muscle structure, were significantly upregulated in B. femoris muscles with higher tenderness in both 16- and 20-wk-old TCCs. In conclusion, results of this study suggested that the tenderness of B. femoris muscles of TCCs may be associated with the proteins which related to the glycolysis muscle structure.
URI: http://hdl.handle.net/11455/96514
文章公開時間: 2020-07-21
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.