Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96517
標題: 利用體外氣體生成技術探討乳牛及豬隻消化道內甲烷氣之動態生成特性
Study of the kinetic characteristics of enteric methane production in dairy cattle and pigs by in vitro gas production technique
作者: 陳中南
Chung-Nan Chen
關鍵字: 乳牛
氫氣累積
動態生成特性
甲烷生成量

dairy cattle
hydrogen accumulation
kinetic characteristics
methane production
pigs
引用: Allen, M. S. 2000. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 83:1598-1624. Allison, M. J. 1970. Nitrogen metabolism of ruminal microorganisms. In: Physiology of digestion and metabolism in the ruminant, Phillipson A. T., Annison E. F., Armstrong D. G., Balch C. C., Hardy R. N., Hobson P. N., Keynes F. R. S. R. D. (eds). Oriel Press Ltd., London. UK. pp. 456-473. Anderson, R. C., G. E. Carstens, R. K. Miller, T. R. Callaway, C. L. Schultz, T. S. Edrington, R. B. Harvey, and D. J. Nisbet. 2006. Effect of oral nitroethane and 2-nitropropanol administration on methane-producing activity and volatile fatty acid production in the ovine rumen. Bioresour. Technol. 97:2421-2426. Anderson, R. C., N. A. Krueger, T. B. Stanton, T. R. Callaway, T. S. Edrington, R. B. Harvey, Y. S. Jung, and D. J. Nisbet. 2008. Effects of select nitrocompounds on in vitro ruminal fermentation during conditions of limiting or excess added reductant. Bioresour. Technol. 99:8655-8661. AOAC. 1995. Official methods of analysis. 16th ed. Association of Official Analytical Chemists. Arlington. VA. USA. AOAC, 2000. Official Methods of analysis, 17th ed. Association of Official Analytical Chemists, Arlington, VA, USA. Appuhamy, J. A. D. R. N., A. B. Strathe, S. Jayasundara, C. Wagner-Riddle, J. Dijkstra, J. France, and E. Kebreab. 2013. Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. J. Dairy Sci. 96:5161-5173. Archimède, H., M. Eugène, C. Marie Magdeleine, M. Boval, C. Martin, D. P. Morgavi, P. Lecomte, and M. Doreau. 2011. Comparison of methane production between C3 and C4 grasses and legumes. Anim. Feed Sci. Technol. 166-167:59-64. Arias, R. A., A. Catrileo, R. Larraín and, R. Vera. 2015. Estimating enteric methane emissions from Chilean beef fattening systems using a mechanistic model. J. Agr. Sci. 153:114-123. Arora, D. S., and R. K. Sharma. 2011. Effect of different supplements on bioprocessing of wheat straw by Phlebia brevispora: changes in its chemical composition, in vitro digestibility and nutritional properties. Bioresour. Technol. 102:8085-8091. Aschenbach, J. R., G. B. Penner, F. Stumpff, and G. Gäbel. 2011. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH. J. Anim. Sci. 89:1092-1107. Bach Knudsen, K. E., and H. Jørgensen. 2001. Intestinal degradation of dietary carbohydrates—from birth to maturity. In: Lindberg, J.E., Ogle, B. (Eds.), Digestive Physiology of Pigs. CABI Publishing, Wallingford. pp.109–120. Bakker, G. C. M. 1996. Interaction between carbohydrates and fat in pigs – Impact on energy evaluation in feeds. PhD Thesis, Wageningen Agricultural University, Wageningen, The Netherlands. Balch, W. E., G. E. Fox, W. F. Magrum, C. R. Woese, and R. S. Wotfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260-296. Balch, W. E., and R. S. Wolfe. 1979a. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium. J. Bacteriol. 137:264-273. Balch, W. E., and R. S. Wolfe. 1979b. Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid). J. Bacteriol. 137:256-263. Baldwin, R. L., J. France, D. E. Beever, M. Gill, and J. H. Thornley. 1987. Metabolism of the lactating cow: III. Properties of mechanistic models suitable for evaluation of energetic relationships and factors involved in the partition of nutrients. J. Dairy Res. 54:133-145. Bannink, A., and H. DeVisser. 1997. Comparison of mechanistic rumen models on mathematical formulation of extramicrobial and microbial processes. J. Dairy Sci. 80:1296-1314. Bannink, A., J. Kogut, J. Dijkstra, J. France, E. Kebreab, A. M. Van Vuuren, and S. Tamminga. 2006. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol. 238:36-51. Bauer, E. 2002. In vitro fermentation characteristics of carbohydraterich feedstuffs using feces and mixed microbial populations from the pig large intestine. Ph.D. Dissertation, Hohenhiem Univ., Germany. Bauer, E., B. A. Williams, M. W. Bosch, C. Voigt, R. Mosenthin, and M. W. A. Verstegen. 2004. Differences in microbial activity of digesta from three sections of the porcine large intestine according to in vitro fermentation of carbohydrate-rich substrates. J. Sci. Food Agric. 84:2097-2104. Bauer, E., B. A.Williams, C. Voigt, R. Mosenthin, and M. W. A. Verstegen. 2003. Impact of mammalian enzyme pretreatment on the fermentability of carbohydrate-rich feedstuffs. J. Sci. Food Agr. 83:207-214. Benchaar, C., F. Hassanat, R. Gervais, P. Y. Chouinard, C. Julien, H. V. Petit, and D. I. Massé. 2013. Effects of increasing amounts of corn dried distiller's grains with solubles in dairy cow diets on methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 96:2413-2427. Beauchemin, K. A., M. Kreuzer, F. O'Mara, and T. A. McAllister. 2008. Nutritional management for enteric methane abatement: a review. Aust. J. Exp. Agric. 48:21-27. Beauchemin, K. A., and S. McGinn. 2006a. Enteric methane emissions from growing beef cattle as affected by diet and level of intake. Can. J. Anim. Sci. 86:401-408. Beauchemin, K. A., and S. M. McGinn. 2006b. Methane emissions from beef cattle: Effects of fumaric acid, essential oil, and canola oil. J. Anim. Sci. 84:1489-1496. Beauchemin, K. A., S. M. McGinn, C. Benchaar, and L. Holtshausen. 2009. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 92:2118-2127. Benchaar, C., F. Hassanat, R. Gervais, P. Y. Chouinard, C. Juline, H. V. Petit, and D. I. Massé. 2013. Effects of increasing amounts of corn dried distillers grains with solubles in dairy cow diets on methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 96:2413-2427. Benchaar, C., J. Rivest, C. Pomar, and J. Chiquette. 1998. Prediction of methane production from dairy cows using existing mechanistic models and regression equations. J. Anim. Sci. 76:617-627. Bergman, E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70:567-590. Bhatta, R., K. Tajima, N. Takusari, K. Higuchi, O. Enishi, and M. Kurihara. 2006. Comparison of sulfur hexafluoride tracer technique, rumen simulation technique and in vitro gas production techniques for methane production from ruminant feeds. Int. Congr. Ser. 1293:58-61. Bhatta, R., O. Enishi, N. Takusari, K. Higuchi, I. Nonaka, and M. Kurihara. 2008.Diet effects on methane production by goats and a comparison between measurement methodologies. J. Agric. Sci. 146:705-715. Bhatta, R., K. Tajima, N. Takusari, K. Higuchi, O. Enishi, and M. Kurihara. 2007. Comparison of in vivo and in vitro techniques for methane production from ruminant diets. Asian-Aust. J. Anim. Sci. 20:1049-1056. Bindelle, J., A. Buldgen, M. Delacollette, J. Wavreille, R. Agneessens, J. P. Destain, P. Leterme. 2009. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria. J. Anim. Sci. 87:583-593. Bindelle, J., A. Buldgen, C. Boudry, and P. Leterme. 2007. Effect of inoculum and pepsin–pancreatin hydrolysis on fibre fermentation measured by the gas production technique in pigs. Anim. Feed Sci. Technol. 132:111-122. Bindelle, J., R. Pieper, P. Leterme, B. Rossnagel, and A. G. Van Kessel. 2010. Changes in intestinal microbial ecophysiology as related to the carbohydrate composition of barleys and oats cultivars in an in vitro model of the pig gastrointestinal tract. Livest. Sci. 133:151-153. Bloom, A. A., P. I. Palmer, A. Fraser, D. S. Reay, and C. Frankenberg. 2010. Large-scale controls of methanogenesis inferred from methane and gravity spacebome data. Science. 327:322-325. Blümmel, M., D. I. Givens, and A. R. Moss. 2005. Comparison of methane produced by straw fed sheep in open-circuit respiration with methane predicted by fermentation characteristics measured by an in vitro gas procedure. Anim. Feed Sci. Technol. 123-124:379-390. Boadi, D., C. Benchaar, J. Chiquette, and D. Masse. 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 84:319-335. Boadi, D. A., K. M. Wittenberg, and A. D. Kennedy. 2002. Validation of the sulphur hexafluoride (SF6) tracer gas technique for measurement of methane and carbon dioxide production by cattle. Can. J. Anim. Sci. 82:125-131. Boisen, S., J. A. Fernández. 1997. Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Anim. Feed Sci. Technol. 68:277-286. Bonhomme, A. 1990. Rumen ciliates: their metabolism and relationships with bacteria and their hosts. Anim. Feed Sci. Technol. 30:203-266. Breznak, J. A., and M. D. Kane. 1990. Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol. Rev. 87:309-314. Brown, D., T. J. Cole, M. J. Dauncey, R. W. Marrs, and P. R. Murgatroyd. 1984. Analysis of gaseous exchange in open-circuit indirect calorimetry. Med. Biol. Eng. Comput. 22:333–338. Brown, V. E., C. Rymer, R. E. Agnew, and D. I. Givens. 2002. Relationship between in vitro gas production profiles of forages and in vivo rumen fermentation patterns in beef steers fed those forages. Anim. Feed Sci. Technol. 98:13-24. Brown, E. G., R. C. Anderson, G. E. Carstens, H. Gutierrez-Ba.uelos, J. L. McReynolds, L. J. Slay, T. R. Callaway, and D. J. Nisbet. 2011. Effects of oral nitroethane administration on enteric methane emissions and ruminal fermentation in cattle. Anim. Feed Sci. Technol. 166-167:275-281. Cao, Z., Y. L. Gong, X. D. Liao, J. B. Liang, B. Yu, and Y. B. Wu. 2013. Effect of dietary fiber on methane production in Chinese Lantang gilts. Livest. Sci. 157:191-199. Carro, M. D.,and M. J. Ranilla. 2003. Effect of the addition of malate on in vitro rumen fermentation of cereal grains. Br. J. Nutr. 89:181-188. Chaves, A.V., L. C. Thompson, A. D. Iwaasa, S. L. Scott, M. E. Olson, C. Benchaar, D. M. Veira, and T. A. McAllister. 2006. Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifers. Can. J. Anim. Sci. 86:409-418. Chen, C. N., T. T. Lee, and B. Yu. 2013. Comparison of the dietary fiber digestibility and fermentability of feedstuffs determined by conventional methods and in vitro gas production technique in pigs. Acta Agr. Scand. A-An. 63:201-207。 Chen, C. N., T. T. Lee, and B. Yu. 2016. Improving the prediction of methane production determined by in vitro gas production technique for ruminants. Ann. Anim. Sci. 16:565-584. Choct, M. 1997. Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling International 6:13-26. Christophersen, C. T., A. D. G. Wright, and P. E. Vercoe. 2008. In vitro methane emission and acetate:propionate ratio are decreased when artificial stimulation of the rumen wall is combined with increasing grain diets in sheep. J. Anim. Sci. 86:384-389. Chagunda, M. G. G., D. A. M. R.mer, and D. J. Roberts. 2009. Effect of genotype and feeding regime on enteric methane, non-milk nitrogen and performance of dairy cows during the winter feeding period. Livest. Sci. 122:323-332. Cone, J. W., A. H. Van Gelder, G. J. W. Visscher, and L. Oudshoorn. 1996. Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Anim. Feed Sci. Technol. 61:113-128. Cummings, J. H., and H. N. Englyst. 1987. Fermentation in the human large intestine and the available substrates. Am. J. Clin. Nutr. 45:1243-1255. Czerkawski, J. W., K. L. Blaxter, and F. W. Wainman. 1966. The metabolism of oleic, linoleic and linolenic acids by sheeps with reference to their effects on methane production. Br. J. Nutr. 20:349-462. Davies, Z. S., D. Mason, A. E. Brooks, G. W. Griffith, R. J. Merry, and M. K. Theodorou. 2000. An automated system for measuring gas production from forages inoculated with rumen fluid and its use in determining the effect of enzymes on grass silage. Anim. Feed Sci. Technol. 83:205-221. Derno, M., H. -G. Elsner, E. -A. Paetow, H. Scholze, and M. Schweigel. 2009. Technical note: A new facility for continuous respiration measurements in lactating cows. J. Dairy Sci. 92:2804-2808. Demeyer, D. I., and C. J. Van Nevel. 1975. Rumen fermentation pattern and efficiency of microbial growth. Misc. Papers Landbouwhogeschool Wageningen. 11:31-32. DePeters, E. J., J. G. Fadel, and A. Arosemena. 1997. Digestion kinetics of neutral detergent fiber and chemical composition within some selected by-product feedstuffs. Anim. Feed Sci. Technol. 67:127-140. Derno, M., H. G. Elsner, E. A. Paetow, H. Scholze, and M. Schweigel. 2009. Technical note: A new facility for continuous respiration measurements in lactating cows. J. Dairy Sci. 92: 2804-2808. Dijkstra, J. 1994. Production and absorption of volatile fatty acids in the rumen. Livest. Prod. Sci. 39:61-69. Dijkstra, J., J. L. Ellis, E. Kebreab, A. B. Strathe, S. Lopez, J. France, and A. Bannink. 2012. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Technol. 172:22-23. Dijkstra, J., E. Kebreab, A. Bannink, J. France, and S. López. 2005. Application of the gas production technique to feed evaluation systems for ruminants. Anim. Feed Sci. Technol. 123-124:561-578. Dijkstra, J., D. St. C. Neal, D. E. Beever, and J. France. 1992. Simulation of nutrient digestion, absorption and outflow in the rumen: Model description. J. Nutr. 122:2239-2255. Ding, S.Y., Y. S. Liu, Y. N. Zeng, M. E. Himmel, J. O. Baker, and E. A. Bayer. 2012. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science. 338:1055-1060. Dohme, F., A. Machmueller, A. Wasserfallen, and M. Kreuzer. 2001. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol. 32:47-51. Ellis, J. L., J. Dijkstra, A. Bannink, E. Kebreab, S. E. Hook. S. Archibeque, and J. France. 2012. Quantifying the effect of monensin dose on the rumen volatile fatty acid profile in high-grain-fed beef cattle. J. Anim. Sco. 90:2717-2726. Ellis, J. L., J. Dijkstra, E. Kebreab, A. Bannink, N. E. Odongo, B. W. McBride, and J. France. 2008. Aspects of rumen microbiology central to mechanistic modeling of methane production in cattle. J. Agr. Sci. 146:212-233. Ellis, J. L., E. Kebreab, N. E. Odondo, B. W. McBride, E. K. Okine, and J. France. 2007. Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 90:3456-3467. EPA (Environmental Protection Agency). 2011. DRAFT: Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990–2030. Publication 430-D-11-003. EPA, Washington, DC. Estermann, B. L., F. Sutter, P. O. Schlegel, D. Erdin, H. R. Wettsten, and M. Kreuzer. 2002. Effect of calf age and dam breed on intake, energy expenditure, and excretion of nitrogen, phosphorus and methane of beef cows with calves. J. Anim. Sci. 80:1124-1134. FAO. Statistical Yearbook. 2013. World food and agriculture. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. FAO. Working Paper. 2014. Agriculture, forestry and other land use emission by sources and removals by sinks. Food and Agriculture Organization of the United Nations, Rome, Italy. Fadel, J. G., E. J. DePeters, and A. Arosemena. 2000. Composition and digestibility of beet pulp with and without molasses and dried using three methods. Anim. Feed Sci. Technol. 85:121-129. Firkins, J. L., M. L. Eastridge, N. R. St-Pierre, and S. M. Noftsger. 2001. Effects of grain variability and processing on starch utilization by lactating dairy cattle. J. Anim. Sci. 79 (Suppl.):E218-E238. Fischbach, M. A., and J. L. Sonnenburg. 2011. Eating for two: How metabolism establishes interspecies interactions in the gut. Cell Host Microbe. 10:336-347. Fiorentini, G., I. P. Carvalho, J. D. Messana, P. S. Castagnino, A. Berndt, R. C. Canesin, R. T. Frighetto, and T. T. Berchielli. 2014. Effect of lipid sources with different fatty acid profiles on the intake, performance, and methane emissions of feedlot Nellore steers. J. Anim. Sci. 92:1613-1620. García-González, R., S. López, M. Fernández, R. Bodas, and J. S. González. 2008. Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Anim. Feed Sci. Technol. 147:36-52. Getachew, G., M. Blummel, H. P. S. Makkar, and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim. Feed Sci. Technol. 72:261-281. Getachew, G., P. H. Robinson, E. J. DePeters, S. J. Taylor, D. D. Gisi, G. E. Higgginbotham, and T. J. Riordan. 2005. Methane production from commercial dairy rations estimated using an in vitro gas technique. Anim. Feed Sci. Technol. 123-124:391-403. Getachew, G., P. H. Robinson, E. J. DePeters, and S. J. Taylor. 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 111:57-71. Gong, Y, L., X. D. Liao, J. B. Liang, M. F. Jahromi, H. Wang, Z. Cao, and Y. B. Wu. 2013. Saccharomyces cerevisiae live cells decreased in vitro methane production in intestinal content of pigs. Asian-Aust. J. Anim. Sci. 26:856-863. Grainger, C., R. William, T. Clarke, A. D. Wright, and R. Eckard. 2010. Supplementation with whole cottonseed causes long-term reduction of methane emissions from lactating dairy cows offered a forage and cereal grain diet. J. Dairy Sci. 93:2612-2619. Groot, J. C. J., J. W. Cone, B. A. Williams, F. M. A. Debersaques, and E. A. Lantinga. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Tech. 64:77-89. Gutierrez-Bañuelos, H., R. C. Anderson, G. E. Carstens, L. J. Slay, N. Ramlachan, S. M. Horrocks, T. R. Callaway, T. S. Edrington, and D. J. Nisbet. 2007. Zoonotic bacterial populations, gut fermentation characteristics and methane production in feedlot steers during oral nitroethane treatment and after the feeding of an experimental chlorate product. Anaerobe. 13:21-31. Hammond, K. J., S. Muetzel, G. C. Waghorn, C. S. Pinares-Patino, J. L. Burke, and S. O. Hoskin. 2009. The variation in methane emissions from sheep and cattle is not explained by the chemical composition of ryegrass. Proc. N.Z. Soc. Anim. Prod. 69:174-178. Hatew, B., S. C. Podesta, H. Van Laar, W. F. Pellikaan, J. L. Ellis, J. Dijkstra, and A. Bannink. 2015a. Effects of dietary starch content and rate of fermentation on methane production in lactating dairy cows. J. Dairy Sci. 98:486-499. Hatew, B., E. Stringano, I. Mueller‐Harvey, W. H. Hendriks, C. H. Carbonero, L. M. Smith, and W. F. Pellikaan. 2015b. Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics. J. Anim. Physiol. Anim. Nutr. 100:348-360. Hindrichsen, I. K., H. R. Wettstein, A. Machmüller, C. R. Soliva, K. E. Bach Knudsen, J. Madsen, and M. Kreuzer. 2004. Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro. Can. J. Anim. Sci. 84:265-276. Hristov, A. N., J. Oh, J. L. Firkins, J. Dijkstra, E. Kebreab, G. Waghorn, H, P. Makkar, A. T. Adesogan, W. Yang, C. Lee, P. J. Gerber, B. Henderson, and J. M. Tricarico, 2013. Special topics - Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91:5045-5069. Hristov A. N., J. Oh, F. Giallongo, T. W. Frederick, M. T. Harper, H. L. Weeks, A. F. Branco, P. J. Moate, M. H. Deighton, S. R. O. Williams, M. Kindermann, and S. Duval. 2015. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA. 112:10663-10668. Hoover, W. H., and S. R. Stokes. 1991. Balancing carbohydrates and proteins for optimum rumen microbial yield. J. Dairy Sci. 74:3630-3644. Hungate, R. E. 1967. Hydrogen as an intermediate in rumen fermentation. Arch. Microbiol. 59:158-164. IPCC, 2006. IPPC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies, Hayama, Japan Immig, I. 1996. The rumen and hindgut as source of ruminant methanogenesis. Environ. Monit. Assess. 42:57-72. Janssen, P. H. 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Tech. 160:1-22. Janssen, P. H., and M. Kirs. 2008. Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 74:3619-3625. Jarvis, G. N., C. Strompl, D. M. Burgess, L. C. Skillman, E. R. Moore, and K. N. Joblin. 2000. Isolation and identification of ruminal methanogens from grazing cattle. Curr. Microbiol. 40:327-332. Jayanegara, A., G. Goel, H. P. S. Makkar, and K. Becker. 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209:60-68. Jensen, B. B. 1996. Methanogenesis in monogastric animals. Environ. Monit. Assess. 42:99-112. Jensen, K., and P. Wolstrup. 1977. Effect of feeding frequency of fermentation pattern and microbial activity in the bovine runen. Acta. Vet. Scand. 18:108-121. Jentsch, W., M. Schweigel, F. Weissbach, H. Scholze, W. Pittroff, and M. Derno. 2007. Methane production in cattle calculated by the nutrient composition of the diet. Arch. Anim. Nutr. 61:10-19. Jha, R., and J. D. Berrocoso. 2015. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal. 9:1441-1452. Jha, R., and P. Leterme. 2012. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal 6:603-612. Jha, R., B. Rossnagel, R. Pieper, A. Van Kessel, and P. Leterme. 2010. Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Anim. 4:724-731. Jha, R., J. Bindelle, A. G. Van Kessel, and P. Leterme. 2011. In vitro fibre fermentation of feed ingredients with varying fermentable carbohydrate and protein levels and protein synthesis by colonic bacteria isolated from pigs. Anim. Feed Sci. Technol. 165:191-200. Joblin, K. N. 1999. Ruminal acetogens and their potential to lower ruminant methane emissions. Aust. J. Agr. Res. 50:1307-1313. Johnson, K. A., and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492. Johnson, D. E., G. M. Ward, and J. J. Ramsey. 1996. Livestock methane: Current emissions and mitigation potential. In: E. T. Kornegay (Ed.) Nutrient Management of Food Animals to Enhance and Protect the Environment. p 219. CRC, Lewis Publishers, Boca Raton, FL. Jones, W. J., D. P. Nagle, and W. P. Whitman. 1987. Methanogens and the diversity of archaebacteria. Microbiol. Rev. 53:135-177. Jørgensen, H. 2007. Methane emission by growing pigs and adult sows as influenced by fermentation. Livest. Sci. 109:216-219. Jørgensen, H., T. Larsen, X. Q. Zhao, and B. O. Eggum. 1997. The energy value of short-chain fatty acids infused into the caecum of pigs. Br. J. Nutr. 77:745-756. Jørgensen, H., A. Serena, M. S. Hedemann, and K. E. Bach Knudsen. 2007. The fermentative capacity of growing pigs and adult sows fed diets with contrasting type and level of dietary fibre. Livest. Sci. 109:111-114. Jørgensen, H., P. K. Theil, and K. E. B. Knudsen. 2011. Enteric methane emissions from pigs. In: Planet Earth 2011 - global warming challenges and opportunities for policy and practice, Carayannis, E. (Eds). InTech, pp. 605-622. Just, A., J. Fernández, and H. Jørgensen. 1983. The net energy value of diets for growth in pigs in relation to the fermentative processes in the digestive tract and the site of absorption of the nutrients. Livest. Prod. Sci. 10:171-186. Kandylis, K. 1984. Toxicology of sulfur in ruminants: Review. J. Dairy Sci. 67:2179-2187. Kebreab, E., K. Clark, C. Wagner-Riddle, and J. France. 2006. Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Can. J. Anim. Sci. 86:135-158. Khattab, M. S. A. 2017. Mathematical prediction equations of methane emission from dairy cattle. Sci. Int. 5:133-141. Khorrami, B., A. Vakili, M. D. Mesgaran, and F. Klevenhusen. 2015. Thyme and cinnamon essential oils: Potential alternatives for monensin as a rumen modifier in beef production systems. Anim. Feed Sci. Technol. 200:8-16. Kim, S. H., L. L. Mamuad, C. D. Jeong, Y. J. Choi, S. S. Lee, J. Y. Ko, and S. S. Lee. 2013. In vitro evaluation of different feeds for their potential to generate methane and change methanogen diversity. Asian-Aust. J. Anim. Sci. 26:1698-1707. Kandler, O., and H. Hippe. 1977. Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch. Microbiol. 113:57-60. Knapp, J. R., G. L. Laur, P. A. Vadas, W. P. Weiss, and J. M. Tricarico. 2014. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 97:3231-3261. Kristensen, N. B., A. Danfær, and N. Agergaard. 1996. Diurnal patterns of ruminal concentrations and portal appearance of short-chain fatty acids in sheep fed a hay or a concentrate/straw diet in two meals daily. Acta Agric. Scand. A Anim. Sci. 46:227-238. Lassey, K. R. 2008. Livestock methane emission and its perspective in the global methane cycle. Aust. J. Exp. Agric. 48:114-118. Lassey, K. R., C. S. Pinares-Patio, R. J. Martin, G. Molano, and A. M. S. McMillan. 2011. Enteric methane emission rates determined by the SF6 tracer technique: Temporal patterns and averaging periods. Anim. Feed Sci. Technol. 166-167:183-191. Latham, M., and M. Wolin. 1977. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Environ. Microbiol. 34:297–301. Le Goff, G., and J. Noblet. 2001. Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows. J. Anim. Sci. 79:2418-2427. Le Goff, G., J. van Milgen, and J. Noblet. 2002. Influence of dietary fibre on digestive utilization and rate of passage in growing pigs, finishing pigs and adult sows. Anim. Sci. 74:503-515. Lee, H. J., S. C. Lee, J. D. Kim, Y. G. Oh, B. K. Kim, C. W. Kim, and K. J. Kim. 2003. Methane production potential of feed ingredients as measured by in vitro gas test. Asian-Aust. J. Anim. Sci. 16:1143-1150. Li, L., J. Davis, J. Nolan, and R. Hegarty. 2012. An initial investigation on rumen fermentation pattern and methane emission of sheep offered diets containing urea or nitrate as the nitrogen source. Anim. Prod. Sci. 52:653-658. Lillis, L., B. Boots, D. A. Kenny, K. Petrie, T. M. Boland, N. Clipson, and E. M. Doyle. 2011. The effect of dietary concentrate and soya oil inclusion on microbial diversity in the rumen of cattle. J. Appl. Microbiol. 111:1426-1435. Lin, M., D. Schaefer, G. Zhao, and Q. Meng. 2013. Effects of nitrate adaptation by rumen inocula donors and substrate fiber proportion on in vitro nitrate disappearance, methanogenesis, and rumen fermentation acid. Animal. 7:1099-1105. Lovett, D. K., A. Bortolozzo, P. Conaghan, P. O'Kiely, and F. P. O'Mara. 2004. In vitro total and methane gas production as influenced by rate of nitrogen application, season of harvest and perennial ryegrass cultivar. Grass Forage Sci. 59:227-232 Machmüller, A., D. A. Ossowski, M. Wanner, and M. Kreuzer. 1998. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim. Feed Sci. Technol. 71:117-130. MacLeod, M., P. Gerber, A. Mottet, G. Tempio, A. Falcucci, C. Opio, T. Vellinga, B. Henderson, and H. Steinfeld. 2013. Greenhouse gas emissions from pig and chicken supply chains - A global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Macrae, R., R. K. Robinson, and M. J. Sadler. 1993. Soya beans. In: R. Macrae, R.K. Robinson, and M.J. Sadler (eds.) Encyclopaedia of food science, food technology and nutrition. Academic Press, London, UK, pp 4215-4218. Martin, S. A., and J. M. Macy. 1985. Effects of monensin, pyromellitic diimide and 2-bromoethanesulfonic acid on rumen fermentation in vitro. J. Anim. Sci. 60:544-550. Martin, C., D. P. Morgavi, and M. Doreau. 2010. Methane mitigation in ruminants: From microbe to farm scale. Animal. 4:351-365. Martinez-Fernandez, G., S. E. Denman, C. Yang, J. Cheung, M. Mitsumori, and C. S. Mc Sweeney. 2016. Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. Front. Microbiol. 7:1122. McAllister, T. A., and C. J. Newbold. 2008. Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agric. 48:7-13. McAllister, T. A., E. K. Okine, G. W. Mathison, and K. J. Cheng. 1996. Dietary, environmental and microbiological aspects of methane production in ruminants. Can. J. Anim. Sci. 76:231-243. McAllister, T. A., R. C. Phillippe, L. M. Rode, and K. -J. Cheng. 1993. Effect of the protein matrix on the digestion of cereal grains by ruminal microorganisms. J. Anim. Sci. 71:205-212. McKenzie, R., A. Rayner, G. Thompson, G. Pidgeon, and B. Burren. 2004. Nitrate-nitrite toxicity in cattle and sheep grazing Dactyloctenium radulans (button grass) in stockyards. Aust. Vet. J, 82:630-634. Meale, S. J., A. V. Chaves, J. Baah, and T. A. McAllister. 2012. Methane production of different forages in in vitro ruminal fermentation. Asian-Aust. J. Anim. Sci. 25:86-91. Menke, K. H., and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. 28:7-55. Michalet-Doreau, B., C. Philippeau, and M. Doreau. 2997. In situ and in vitro ruminal starch degradation of untreated and formaldehyde-treated wheat and maize. Reprod. Nutr. Dec. 37:305-312. Miller, T. L. 1995. Ecology of methane production and hydrogen sinks in the rumen. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction. Proc. 8th Int. Symp. Ruminant Physiol. Engelhardt, W. V., S. Leonhard-Marek, G. Breves, and D. Giesecke (Eds.), Ferdinand Enke Verlag, Stuttgart, Germany. pp. 317-331. Miller, W. H., and R. M. Koes. 1988. Construction and operation of an open-circuit indirect calorimetry system for small ruminants. J. Anim. Sci. 66:1042-1047. Mills, J. A. N., J. Dijkstra, A. Bannink, S. B. Cammell, E. Kebreab, and J. France. 2001. A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation, and application. J. Anim. Sci. 79:1584-1597. Mills, J. A. N., E. Kebreab, C. M. Yates, L. A. Crompton, S. B. Cammell, M. S. Dahnoa, R. E. Agnew, and J. France. 2003. Alternative approaches to predicting methane emissions from dairy cows. J. Anim. Sci. 81:3141-3150. Moate, P. J., T. Clarke, L. H. Davis, and R. H. Laby. 1997. Rumen gases and bloat in grazing dairy cows. J. Agr. Sci. 129:459-469. Moate, P., S. Williams, C. Grainger, M. Hannah, E. Ponnampalam, and R. Eckard. 2011. Influence of cold-pressed canola, brewer's grains and hominy meal as dietary supplements suitable for reducing enteric methane emissions from lactating dairy cows. Anim. Feed Sci. Technol. 166:254-264. Moe, P. W., and H. F. Tyrrell. 1979. Methane production in dairy cows. J. Dairy Sci. 62:1583-1586. Moss, A. R., J. Jouany, and J. Newbold. 2000. Mathane production by ruminants: its contribution to global warming. Ann. Zootech. 49:231-253. Morvan, B., F. Rieu-Lesme, G. Fonty, and P. Gouet. 1996. In vitro interactions between rumen H2 producing cellulolytic microorganisms and H2-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe. 2:175-180. Mould, F. L., K. E. Kliem, R. Morgan, and R. M. Mauricio. 2005. In vitro microbial inoculum: a review of its function and properties. Anim. Feed Sci. Technol. 123-124:31-50. Muñoz, C., T. Yan, D. A. Wills, S. Murray, and A. W. Gordon. 2012. Comparison of the sulfur hexafluoride tracer and respiration chamber techniques for estimating methane emissions and correction for rectum methane output from dairy cows. J. Dairy Sci. 95:3139-3148. National Research Council. 2001. Nutrient Requirements of Dairy Cattle. National Academy Press. Washington, D. C. Navarro-Villa, A., M. O'Brien, S. Lopez, T. M. Boland, and P. O'Kiely. 2011. Modifications of a gas production technique for assessing in vitro rumen methane production from feedstuffs. Anim. Feed Sci. Tech. 166-167:163-174. Nollet, L., D. Demeyer, and W. Verstraete. 1997. Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis. Appl. Environ. Microbiol. 63:194-200. Noblet, J., and G. Le Goff. 2001. Effect of dietary fibre on the energy value of feeds for pigs. Anim. Feed Sci. Technol. 90:35-52. Noblet, J., and Y. Jaguelin-Peyraud. 2007. Prediction of digestibility of organic matter and energy in the growing pig from an in vitro method. Anim. Feed Sci. Technol. 134:211-222. Noblet, J. and J. M. Perez. 1993. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J. Anim. Sci. 71:3389-3398. Nocek, J. E., and S. Tamminga. 1991. Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. J. Dairy Sci. 74:3598-3629. Newbold, C. J., B. Lassalas, and J. P. Jouany. 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 21:230-234. O'Brien, M., A. Navarro-Villa, P. J. Purcell, T. M. Boland, and P. O'Kiely. 2013. Reducing in vitro rumen methanogenesis for two contrasting diets using a series of inclusion rates of different additives. Anim. Prod. Sci. 54:141-157. Odongo, N. E., R. Bagg, G. Vessie, P. Dick, M. M. Or-Rashid, S. E. Hook, J. T. Gray, E. Kebreab, J. France, and B. W. McBride. 2007. Long-term effects of feeding monensin on methane production in lactating dairy cows. J. Dairy Sci. 90:1781-1788. Okine, E. K., G. W. Mathison, and R. T. Hardin. 1989. Effects of changes in frequency of reticular contractions on fluid and particulate passage rates in cattle. J. Anim. Sci. 67:3388-3396. Pal, K., A. K. Patra, A. Sahoo, and P. K. Kumawat. 2015. Evaluation of several tropical tree leaves for methane production potential, degradability and rumen fermentation in vitro. Livest. Sci. 180:98-105. Pal, K, A. K. Patra, A. Sahoo, and G. P. Mandal. 2014. Effect of nitrate and fumarate in Prosopis cineraria and Ailanthus excelsa leaves-based diets on methane production and rumen fermentation. Small Rumin. Res. 121:168-174. Patra, A. K. 2014. A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep. Livest. Sci. 162:97-103. Patra, A., T. Park, M. Kim, and Z. Yu. 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 8:13. Patra, A., and Z. Yu. 2013. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro. J. Dairy Sci. 96:1782-1792. Pell, A. N., and P. Schofield. 1993. Computerized monitoring of gas production to measure forage digestion in vitro. J. Dairy Sci. 76:1063-1073. Pellikaan, W. F., W. H. Hendriks, G. Uwimana, L. J. G. M. Bongers, P. M. Becker, and J. W. Cone. 2011. A novel method to determine simultaneously methane production during in vitro gas production using fully automated equipment. Anim. Feed Sci. Technol. 168: 196-205. Philippe, F. -X., B. Canart, M. Laitat, J. Wavreille, M. Vandenheede, N. Bartiaux-Thill, B. Nicks, and J. F. Cabaraux. 2009. Gaseous emissions from group-housed gestating sows kept on deep litter and offered an ad libitum high-fibre diet. Ecosyst. Environ. 132:66-73. Philippe, F. -X., and B. Nicks. 2014. Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agric. Ecosyst. Environ. 199:10-25. Philippe, F.-X., J.-F.Cabaraux, and B. Nicks. 2011. Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agric. Ecosyst. Environ. 141:245-260. Pinares-Patiño, C. S., P. D'Hour, J. P. Jouany, and C. Martin. 2007. Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agric. Ecosyst. Environ. 121:30-46. Pinares-Patiño, C. S., A. Machmuller, G. Molano, A. Smith, J. B. Vlaming, and H. Clark. 2008. The SF6 tracer technique for measurements of methane emission from cattle-Effect of tracer permeation rate. Can. J. Anim. Sci. 88:309-320. Pinares-Patiño, C. S., J. C. McEwan, K. G. Dodds, E. A. Cárdenas, R. S. Hegarty, J. P. Koolaard, and H. Clark. 2011.Repeatability of methane emissions from sheep. Anim. Feed Sci. Technol. 166-167:210-218. Pirondini, M., L. Malagutti, S. Colombini, P. Amodeo, and G. M. Crovetto. 2012. Methane yield from dry and lactating cows diets in the Po Plain (Italy) using an in vitro gas production technique. Ital. J. Anim. Sci. 11:330-335. Ramin, M., and P. Huhtanen. 2013. Development of equations for predicting methane emissions from ruminants. J. Dairy Sci. 96:2476-2493. Reichl, J. R. and R. L. Baldwin. 1975. Rumen modeling: Rumen input-output balance models. J. Dairy Sci. 58:879-890. Rérat, A., M. Fiszlewicz, A. Glusi, and P. Vaugelade. 1987. Influence of meal frequency on postprandial variations in the production and absorption of volatile fatty acids in the digestive tract of conscious pigs. J. Anim. Sci. 64:448-456. Rowe, J. B., M. L. Loughnan, J. V. Nolan, and R. A. Leng. 1979. Secondary fermentation in the rumen of a sheep given a diet based on molasses. Br. J. Nutr. 41: 393-397. Russell, J. B., and R. B. Hespell. 1981. Microbial rumen fermentation. J. Dairy Sci. 64:1153-1169. Russell, J. B., and R. J. Wallace. 1988. Energy-yielding and energy consuming reactions. In: The Rumen Microbial Ecosystem, Hobson, P. N., and C. S. Stewart (Eds.), Blackie Academic and Professional, London. UK. pp. 246-282. Saminathan, M., C. C. Sieo, H. M. Gan, N. Abdullah, C. M. V. L. Wong, and Y. W. Ho. 2016. Effects of condensed tannin fractions of different molecular weights on population and diversity of bovine rumen methanogenic archaea in vitro, as determined by high-throughput sequencing. Anim. Feed Sci. Technol. 216:146-160. Santoso, B., and B. T. Hariadi. 2009. Evaluation of nutritive value and in vitro methane production of feedstuffs from agricultural and food industry by-products. J. Indones. Trop. Anim. Agric. 34:189-195. Santoso, B., S. Kume, K. Nonaka, K. Kimura, H. Mizokoshi, Y. Gamo, and J. Takahashi. 2003. Methane emission, nutrient digestibility, energy metabolism and blood metabolites in dairy cows fed silages with and without galacto-oligosaccharides supplementation. Asian-Aust. J. Anim. Sci. 16:534-540. SAS Institute Inc. 2010. SAS/STAT® 9.22 User's Guide. SAS Institute Inc. Cary, NC. Scheifinger, C., B. Linehan, and M. Wolin. 1975. H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria. Appl. Microbiol. 29:480-483. Schulze, H., P. van Leeuwen, M. W. Verstegen, J. Huisman, W. B. Souffrant, and F. Ahrens. 1994. Effect of level of dietary neutral detergent fiber on ileal apparent digestibility and ileal nitrogen losses in pigs. J. Anim. Sci. 72:2362-2368. Sejian, V., R. Lai, J. Lakritz, and T. Ezeli. 2011. Measurement and prediction of enteric methane emission. Int. J. Biometeorol. 55:1-16. Singer, M. D., P. H. Robinson, A. Z. M. Salem, and E. J. DePeters. 2008. Impacts of rumen fluid modified by feeding Yucca schidigera to lactating dairy cows on in vitro gas production of 11 common dairy feedstuffs, as well as animal performance. Anim. Feed Sci. Technol. 146:242-258. Singh, S., B. P. Kushwaha, S. K. Nag, A. K. Mishra, A. Singh, and U. Y. Anele. 2012. In vitro ruminal fermentation, protein and carbohydrate fractionation, methane production and prediction of twelve commonly used Indian green forages. Anim. Feed Sci. Technol. 178:2-11. Soliva, C. R., I. K. Hindrichsen, L. Meile, M. Kreuzer, and A. Machmüller. 2003. Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett. Appl. Microbiol. 37:35-39. Soliva, C. R., L. Meile, I. K. Hindrichsen, M. Kreuzer, and A. Machmüller. 2004. Myristic acid supports the immediate inhibitory effect of lauric acid on ruminal methanogens and methane release. Anaerobe. 10:269.276. Soliva, C. R., A. B. Zeleke, C. Clement, H. D. Hess, V. Fievez, and M. Kreuzer. 2008. In vitro screening of various tropical foliages, seeds, fruits and medicinal plants for low methane and high ammonia generating potentials in the rumen. Anim. Feed Sci. Technol. 147:53-71. Spiehs, M. J., M. H. Whitney, and G. C. Shurson. 2002. Nutrient database for distiller's dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. J. Anim. Sci. 80:2639-1645. Stewart, C. S., and M. P. Bryant. 1988. The rumen bacteria. In: Anaerobic bacteria in habitats other than man. Hobson, P. N. (Eds.), Blackwell Scientific Publications, Palo Alto, CA. pp. 21-75. Stewart, C. S., H. J. Flint, and M. P. Bryant. 1997. The rumen bacteria. In: The Rumen Microbial Ecosystem. Hobson, P. N., and C. S. Stewart (Eds.), Blackie Academic & Professional, London. pp. 10-72. Storm, I. M. L. D., A. L. F. Hellwing, N. I. Nielsen, and J. Madsen. 2012. Methods for measuring and estimating methane emissions from ruminants. Animals. 2:160-183. Sutton, J. D., I. C. Hart, W. H. Broster, R. J. Elliott, and E. Schuller. 1986. Feeding frequency for lactating dairy cows: effects on rumen fermentation and blood metabolites and hormones. Brit. J. Nutr. 56:181-192. Takahashi, J. 2001. Nutritional manipulation of methanogenesis in ruminants. Asian-Aust. J. Anim. Sci. 14:131-135. Thauer, R. K. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson Prize Lecture. Microbiology. 144:2377-2406. Thauer, R. K., A. Kaster, H. Seedorf, W. Buckel, and R. Hedderich. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6:579-591. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197. Tomkins, N. W., S. E. Denman, R. Pilajun, M. Wanapat, C. S. McSweeney, and R. Elliott. 2015. Manipulating rumen fermentation and methanogenesis using an essential oil and monensin in beef cattle fed a tropical grass hay. Anim. Feed Sci. Technol. 200:25-34. Tyrell, H. F., and P. W. Moe. 1975. Effect of intake on digestive efficiency. J. Dairy Sci. 58:1151-1163. Ungerfeld, E. M. 2015. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Front. Microbiol. 6:37. Ungerfeld, E. M., S. Rust, D. Boone, and Y. Liu. 2004. Effects of several inhibitors on pure cultures of ruminal methanogens. J. Appl. Microbiol. 97:520-526. Van Lingen, H. J., J. E. Edwards, J. D. Vaidya, S. van Gastelen, E. Saccenti, B. van den Bogert, A. Bannink, H. Smidt, C. M. Plugge, and J. Dijkstra. 2017. Diurnal dynamics of gaseous and dissolved metabolites and microbiota composition in the bovin rumen. Front. Microbiol. 8:425. Van Lingen, H. J., C. M. Plugge, J. G. Fadel, E. Kebreab, A. Bannink, and J. Dijkstra. 2016. Thermodynamics driving force of hydrogen on rumen microbial metabolism: A theoretical investigation. PLoS ONE. 11:e0168052. Van Milgen, J., L. L. Berger, and M. R. Murphy. 1993. Digestion kinetics of alfalfa straw assuming heterogeneity of the potentially digestible fraction. J. Anim. Sci. 71:1917-1923. Van Nevel, C., and D. Demeyer. 1996. Control of rumen methanogenesis. Environ. Monit. Assess. 42:73-97. Van Nevel, C., and D. I. Demeyer. 1977. Effect of monensin on rumen metabolism in vitro. Appl. Environ. Microbiol. 34:251-257. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. Van Zijderveld, S. M., W. J. Gerrits, J. A. Apajalahti, J. R. Newbold, J. Dijkstra, R. A. Leng, and H. B. Perdok. 2010. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93:5856-5866. Vanholme, R., B. Demedts, K. Morreel, J. Ralph, and W. Boerjan. 2010. Lignin biosynthesis and structure. Plant Physiol. 153:895-905. Váradyová, Z., I. Zeleňák, and P. Siroka. 2000. In vitro study of the rumen and hindgut fermentation of fbrous materials (meadow hay, beech sawdust, wheat straw) in sheep. Anim. Feed Sci. Technol. 83:127-138. Vicini, J. L., W. J. Brulla, C. L. Davis, and M. P. Bryant. 1987. Quin's oval and other microbioa in the rumen of molasses-fed sheep. Appl. Environ. Microbiol. 47:219-221. Vyas, D., S. M. McGinn, S. M. Duval, M. K. Kindermann, and K. A. Beauchemin. 2016. Optimal dose of 3-nitrooxypropanol for decreasing enteric methane emissions from beef cattle fed high-forage and high-grain diets. Anim. Prod. Sci. doi:10.1071/AN15705 Waghorn, G. C., and R. S. Hegarty. 2011. Lowering ruminant methane emissions through improved feed conversion efficiency. Anim. Feed Sci. Technol. 166-167:291-301. Wang, M., P. H. Janssen, X. Z. Sun, S. Muetzel, M. Tavendale, Z. L. Tan, and D. Pacheco. 2013. A mathematical model to describe in vitro kinetics of H2 gas accumulation. Anim. Feed Sci. Technol. 184:1-16. Westreicher-Kristen, E., H. Steingass, and M. Rodehutscord. 2012. Variations in chemical composition and in vitro and in situ ruminal degradation characteristics of dried distillers' grains with solubles from European ethanol plants. Arch. Anim. Nutr. 66:458-472. Wenk, C. 2001. The role of dietary fibre in the digestive physiology of the pig. Anim Feed Sci Technol. 90:21-33. Williams, B. A., M. W. Bosch, A. Awati, S. R. Konstantinov, H. Smidt, A. D. L. Akkermans, M. W. A. Verstegen, and S. Tamming. 2005. In vitro assessment of gastrointestinal tract (GIT) fermentation in pigs: fermentable substrates and microbial activity Anim. Res. 54:191-201. Williams, S. R. O., P. J. Moate, M. C. Hannah, B. E. Ribaux, W. J. Wales, and R. J. Eckard. 2011. Background matters with the SF6 tracer method for estimating enteric methane emissions from dairy cows: A critical evaluation of the SF6 procedure. Anim. Feed Sci. Technol. 170:265-276. Williams, B. A., M. W. Verstegen, and S. Tamminga. 2001. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev. 14:207-228. Wilkerson, V. A., D. P. Casper, and D. R. Mertens. 1995. The prediction of methane production of Holstein cows by several equations. J. Dairy Sci. 78:2402-2414. Wilfart, A., L. Montagne, H. Simmins, J. Noblet, and J. Van Milgen. 2007. Effect of fibre content in the diet on the mean retention time in different segments of the digestive tract in growing pigs. Livest. Sci. 109:27-29. Wischer, G., J. Boguhn, H. Steinga, M. Schollenberger, and M. Rodehutscord. 2013. Effects of different tannin-rich extracts and rapeseed tannin monomers on methane formation and microbial protein synthesis in vitro. Animal 7: 1796-1805. Woese, C. R. 1987. Bacterial evolution. Microbiol. Res. 51:221-271. Wolin, M. J. 1974. Metabolic interactions among intestinal microorganisms. Am. J. Clin. Nutr. 27:1320-1328. Wolin, M. J. 1981. Fermentation in the rumen and human large intestine. Science. 213:1463-1468. Wolin, M. J., T. L. Miller, and C. S. Stewart. 1997. Microbe-microbe interactions. In: The Rumen Microbial Ecosystem, Hobson, P. N., and C. S. Stewart (Eds.), Blackie Academic and Professional, London. UK. pp. 467-491. Yang, W. Z., K. A. Beauchemin, and L. M. Rode. 2001. Effects of grain processing, forage to concentrate ratio, and forage particle size on rumen pH and digestion by dairy cows. J. Dairy Sci. 84:2203-2216. Yang, C., S. Mao, L. Long, and W. Zhu. 2012. Effect of disodium fumarate on microbial abundance, ruminal fermentation and methane emission in goats under different forage: Concentrate ratios. Animal. 6:1788-1794. Yang, C., J. A. Rooke, I. Cabeza, and R. J. Wallace. 2016. Nitrate and inhibition of ruminal methanogenesis: Microbial ecology, obstacles, and opportunities for lowering methane emissions from ruminant livestock. Front. Microbiol. 7:132. Zhang, W., D. Li, L. Liu, J. Zang, Q. Duan, W. Yang, and L. Zhang. 2013. The effects of dietary fiber level on nutrient digestibility in growing pigs. J. Anim. Sci. Biotechnol. 4:17. Zhang, X. H, Zhang, Z. Wang, X. Zhang, H. Zou, C. Tan, and Q. Peng. 2015. Effect of dietary carbohydrate composition on rumen fermentation characteristics and microbial population in vitro. Ital. J. Anim. Sci. 14:524-531. Zhou, M., E. Hernandez-Sanabria, and L. L. Guan. 2009. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl. Environ. Microbiol. 75:6524-6533. Zhou, X., L. Meile, M. Kreuzer, and J. O. Zeitz. 2013. The effect of saturated fatty acids on methanogenesis and cell viability of Methanobrevibacter ruminantium. Archaea. 2013:106916. Zhu, J. Q., V. R. Fowler, and M. F. Fuller. 1993. Assessment of fermentation in growing pigs given unmolassed sugar-beet pulp: a stoichiometric approach. Br. J. Nutr. 69:511-525.
摘要: 甲烷為主要溫室氣體之一。過去研究顯示,畜牧業甲烷排放量佔全球排放量約20%。除此之外,反芻動物(牛和羊)及非反芻動物(豬和馬)消化道內微生物發酵作用所產生之甲烷亦可視為動物之能量損失。動物消化道內甲烷生成量受多種因素影響,為確認甲烷減量策略之有效性,需要一可快速、準確且再現性高之體外技術測定甲烷生成量。因此,本論文之主要目的為建立一套可快速評估動物消化道內甲烷生成量之體外技術,有助於深入了解消化道內甲烷動態生成情況,作為預測原料甲烷生成量之依據並提高其預測之準確性。為達成此目的,本研究使用體外氣體生產技術 (In vitro gas production technique, IVGPT) 配合氣體成分測定,評估臺灣乳牛及豬隻常用飼料原料之甲烷生成量及其動態生成特性。結果顯示,大麥、玉米、小麥、甜菜渣及大豆殼粒於IVGPT培養期間所測得之體外甲烷產量高於麩皮、玉米酒糟、大豆粕、菜籽粕、苜蓿乾草、百慕達乾草及玉米青眝料。將原料依據組成分特性分為穀物、富含纖維副產物、富含蛋白質副產物及芻料等四組後,各組原料之中洗纖維 (Neutral detergent fibre, NDF)、酸洗纖維 (Acid detergent fibre, ADF) 及酸洗木質素 (Acid detergent lignin, ADL) 含量和體外真消化率 (In vitro true digestibility, IVTD) 為影響瘤胃甲烷產量之主要因素。藉由為每組飼料選擇適合之組成分作為預測因子,可以準確預測原料之甲烷產量。由於穀物、甜菜渣及大豆殼粒可被微生物大量且快速發酵,造成大量氫氣累積於發酵瓶之頂部空間,因此這些原料發酵後可於較短時間 (tHP) 達到較其它原料高之氫氣累積量 (VFH及VHP)。藉由添加sodium-2-bromoethanesulphonate (BES) 或monensin (MON) 抑制甲烷生成作用時,BES處理組具有顯著較未添加及MON處理組高之氫氣累積量 (VFH及VHP),其中以不可溶氫氣 (fraction y, Vhfi) 比例較高。相反地,MON處理組具有較BES處理組高之可溶性氫氣累積量 (fraction x, VHpx) 及累積之比例 (c)。於豬隻方面,飼糧纖維為不可被動物消化酵素所水解之碳水化合物,可作為後腸微生物發酵作用之主要碳水化合物來源。因此飼糧中可溶性 (SDF) 和不可溶性 (IDF) 飼糧纖維之含量為影響豬隻飼料原料於消化道內甲烷生成量 (CH4 orig)及生成速率 (Rmax) 之主要因素。富含纖維副產物由於含有大量飼糧纖維,因此具有最高之CH4 orig。豬隻腸道中CH4 orig生成量隨飼料中飼糧纖維含量提高呈線性增加。於線性方程式中使用飼糧纖維作為預測因子可顯著提升預測CH4 orig生成量之準確性 (R2)。飼料原料可藉由其SDF與IDF含量預估於豬隻消化道內之CH4 orig生成量 (CH4 orig = 0.279 + 0.054 SDF + 0.011 IDF, R2 = 0.837)。由於IDF被微生物發酵速率較SDF低,豬隻消化道內甲烷生成速率受飼料中SDF與IDF比例所影響。麩皮及富含蛋白質副產物中IDF佔總飼糧纖維 (TDF) 之比例達90%以上,因此具有較大麥、玉米、小麥、甜菜渣及大豆殼低之甲烷生成速率 (Rmax)。綜合上述結果顯示,可由飼料原料之化學組成分預估其甲烷生成量,各組成分對乳牛與豬隻消化道內甲烷生成量之影響可藉由IVGPT提供之動態生成特性解釋。此外,甲烷抑制劑作用方式之差異亦可藉由IVGPT所測得之氫氣累積模式區分。因此,IVGPT配合氣體組成分測定同時評估消化道內微生物發酵作用、甲烷及氫氣之生成量與動態生成特性,可用於快速篩選低甲烷生成量之飼料原料並評估飼糧處理降低乳牛及豬隻消化道內甲烷生成量之效果,可供未來配製低甲烷生成飼糧作為參考。
Methane is one of the main greenhouse gases. The livestock sector contributes approximately 20% of global methane emissions. Both ruminant animals (cattle and sheep) and non-ruminants (swine and horses) produce methane as a byproduct of enteric fermentation, which is considered as energy loss to the host animals. The enteric methane production varies with several factors. To identify effective mitigation strategies, a rapid, accurate and repeatable in vitro technique is required. Therefore, the main objective of this thesis was to establish an in vitro technique for rapid evaluation of enteric methane production, providing further insight into the kinetic methane production, and to improve the accuracy for methane prediction from chemical composition of feedstuffs. To achieve this objective, in vitro gas production technique (IVGPT) was applied to determine the kinetic methane production from the feedstuffs and forages that commonly used for dairy cattle and pigs in Taiwan. The results showed that higher in vitro methane productions were determined in cereals (barley, maize and wheat), sugar beet pulp and soybean hull than those determined in wheat bran, protein-rich byproducts (dried distillers grains with solubles, soybean meal and rapeseed meal) and forages for dairy cows. After the feedstuffs were classified into four groups, including cereals, fibrous byproducts, protein-rich byproducts and forages, the content of detergent fiber fractions (NDF, ADF and ADL) and in vitro true digestibility (IVTD) of feedstuffs were the major factors affecting ruminal methane production in all groups of feedstuff. The methane production of feedstuffs can be accurately predicted from their chemical compositions and IVTD by selecting the suitable predictors for each group of feedstuffs. A large amount of hydrogen accumulated in the headspace due to the rapid and extensive fermentation of cereals, sugar beet pulp and soybean hull. The fermentation of these feedstuffs took a shorter time (tHP) to reach a higher accumulation of hydrogen (VFH and VHP) than that of forages. When methanogenesis was inhibited by the addition of sodium-2-bromoethanesulphonate (BES) and monensin (MON), a much higher level of hydrogen accumulation (VFH and VHp) in high proportion of non-dissolvable hydrogen (fraction y, Vhfi) was observed in the BES addition groups. In contrast, the addition of MON resulted in a higher amount (VHpx) and proportion (c) of dissolvable hydrogen (fraction x) accumulation than BES addition groups. For pigs, the contents of dietary fiber fractions, including soluble (SDF) and insoluble (IDF) dietary fiber, are the major factors that affecting the amount (CH4 orig) and the rate (Rmax) of methane production from the feedstuffs. The highest CH4 orig was observed in the fibrous byproducts with abundant dietary fiber content. A linear response of CH4 orig to the dietary fiber inclusion level was also observed for pig diets. The R2 for CH4 orig prediction was dramatically improved by including dietary fiber fractions in the equations. The CH4 orig of feedstuffs can be accurately predicted from the content of dietary fiber fractions in the feedstuffs and diets (CH4 orig = 0.279 + 0.054 SDF + 0.011 IDF, R2 = 0.837). The rate of methane production is decided by the proportions of dietary fiber fractions in the feedstuffs due to the different microbial accessibility between SDF and IDF. The high proportion of IDF accounted over 90% of TDF in the wheat bran and protein-rich byproducts, resulting in a lower Rmax of methane production on incubated DM basis as compared to the cereals, sugar beet pulp and soybean hull. According to these results, the methane production of feedstuffs can be predicted from their chemical composition, and the effect of chemical compositions on methane production can be interpreted by the kinetic characteristics determined by the IVGPT for dairy cattle and pigs. The difference in the mode of action between methane inhibitors can be observed in the patterns of hydrogen accumulation. Therefore, the IVGPT combined with measurement of gas composition can simultaneously determine the kinetic characteristics of microbial fermentation, methane production and hydrogen accumulation. It can be applied for rapidly screening the low methane-producing feedstuffs and evaluating the effect of dietary treatments on methane mitigation for dairy cattle and pigs.
URI: http://hdl.handle.net/11455/96517
文章公開時間: 2021-02-07
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.