Please use this identifier to cite or link to this item:
標題: 應用即時定量聚合酶連鎖反應技術分析不同芻料組成於體外發酵瘤胃菌相之變化
Effects of different forage compositions on rumen microbiota in vitro using quantitative real-time polymerase chain reaction assay
作者: 邱怡雯
Yi-Wen Chiu
關鍵字: 即時定量聚合酶連鎖反應
Rumen microbial populations
in vitro fermentation
引用: 楊价民。1997。瘤胃生態系統與反芻動物對養分的利用。藝軒圖書出版社。新北市。 Akkada, A. R., E. E. Bartley, R. Berube, L. R. Fina, R. M. Meyer, D. Henricks, and F. Julius. 1968. Simple method of remove completely ciliate protozoa of adult ruminants. Appl. Microbiol. 16 (10): 1475-1477. Alifano, P., C. B. Bruni, and M. S. Carlomagno. 1994. Control of mRNA processing and decay in prokaryotes. Genetica. 94: 157-172. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59 (1): 143-169. Angarita, E., I. Molina, G. Villegas, O. Mayorga, J. Chará, and R. Barahona. 2015. Quantitative analysis of rumen microbial populations by qPCR in heifers fed on Leucaena leucocephala in the Colombian Tropical Dry Forest. Acta. Sci. Anim. Sci. 37 (2): 135-142. AOAC. 2005. Method number 984.13. Official Methods of Analysis of AOAC International, 18th edn. AOAC International, Gaithersburg, MD. Bae, G. S., M. B. Chang, W. J. Maeng, R. J. Dewhurst, D. R. Davies, and R. J. Merry. 2000. Variation in the concentrations of odd-chain fatty acids in rumen bacteria. Proceedings of the 25th Conference on Rumen Function, Chicago, IL, p. 32. Bastida, F., S. Jechalke, P. Bombach, A. G. Franchini, J. Seifert, M. con Vergen, C. Vogt, and H. H. Richnow. 2011. Assimilation of benzene carbon through multiple trophic levels traced by different stable isotope probing methodologies. FEMS Microbiol. Ecol. 77: 357-369. Bauchart, D., F. Legay-Carmier, M. Doreau, and B. Gaillard. 1990. Lipid metabolism of liquid-associated and solid-adherent bacteria in rumen contents of dairy cows offered lipid-supplemented diets. Br. J. Nutr. 63: 563. Bekele, A. Z., S. Koike, and Y. Kobayashi. 2010. Genetic diversityand diet specificity of ruminal Prevotella revealed by16S rRNA gene-based analysis. FEMS Microbiol. Lett. 305 (1): 49-57. Belanche, A., G. de la Fuente, and C. J. Newbold. 2014. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol. Ecol. 90: 663-677. Belasco, J. 1993. mRNA degradation in prokaryotic cells: an overview, p. 3-12. In J. Belasco and G. Brawerman (ed.), Control of messenger RNA stability. Academic Press, Inc., San Diego, Calif. Bessa, R. J. B., M. R. G. Maia, E. Jeronimo, A. T. Belo, A. R. J. Cabrita, R. J. Dewhurst, and A. J. M. Fonseca. 2009. Using microbial fatty acids to improve understanding of the contribution of solid associated bacteria to microbial mass in the rumen. Anim. Feed Sci. Technol. 150: 197–206. Bio-Rad Laboratories, Inc. 2006. Real-Time PCR applications guide. Bulltetin 5279 US/EG Rev B. Hercules, CA. Bird, S. H., and R. A. Leng. 1978. The effects of defaunation of the rumen on the growth of cattle on low protein, high energy diets. B. J. Nutr. 40: 163-167. Block, E. 2006. Rumen microbial protein production: Are we missing an opportunity to improve dietary and economic efficiencies in protein nutrition of the high producing dairy cow? High Plains Dairy Conference. Brazier, N. 2010. Rumen function. Performance probiotic. http://www.performanceprobi Castillo-Gonzalez, A. R., M. E. Burrola-Barraza, J. Domínguez-Viveros, and A. Chávez-Martínez. 2014. Rumen microorganisms and fermentation. Arch. Med. Vet. 46: 349-361. Castro-Montoya, J., A. M. Bhagwat, N. Peiren, and S. De Campeneere. 2011. Relationships between odd- and branched-chain fatty acid profiles in milk and calculated enteric methane proportion for lactating dairy cattle. Anim. Feed Sci. Technol. 166-167: 596-602. Chaucheyras-Durand, F., and F. Ossa. 2014. Review: The rumen microbiome: composition, abundance, diversity, and new investigative tools. The professional Animal Scientist. 30: 1-12. Chen, L. M., and H. R. Wang. 2016. Advances in the metabolism and regulation of lactic acids in the rumen. Pratacultural Science. 33 (5): 972-980. Chen, M., and M. J. Wolin. 1981. Influence of heme and vitamin B 12on growth and fermentations of Bacteroides species. J. Bacteriol. 145: 466–471. Chesson, A., and J. A. Monro. 1982. Legume pectic substances and their degradation in the ovine rumen. J. Sci. Food Agric. 33: 852–859. Coleman, G. S. 1975. The interrelationship between rumen ciliate protozoa and bacteria. In: McDonald IW, Warner ACI (eds) Digestion and metabolism in the ruminant. University of New England Publishing Unit, Armidale, pp 149–164. Czerkawski, J. W. 1986. An introduction to rumen studies. Pergamon Press, Oxford/New York. Dahllöf, I. 2002. Molecular community analysis of microbial diversity. Curr. Opin. Biotechnol. 13: 213-217. Danielsson, R., A. Schnürer, V. Arthurson, and J. Bertilsson. 2012. Methanogenic population and CH4 production in Swedish dairy cows fed different levels of forage. Appl. Environ. Microbiol. 78 (17): 6172-6179. Dehority, B. A. 1993. Rumen microbiology. Nottingham University Press, Nottingham. Dehority, B. A. 1998. Generation times of Epidinium caudatum and Entodinium caudatum, determined in vitro by transferring at various time intervals. J. Anim. Sci. 76: 1189-1196. Dehority, B. A. 2004a. Species of rumen bacteria active in the fermentation of hemicellulose. In: Dehority BA (ed) Rumen microbiology. Nottingham University Press, Nottingham, pp 209–228. Dehority, B. A. 2004b. Pectin-fermenting species of rumen bacteria. In: Dehority BA (ed) Rumen microbiology. Nottingham University Press, Nottingham, pp 229–242. Dehority, B. A. 2004c. Starch digester, other less numerous species, and facultative anaerobes in the rumen. In: Dehority BA (ed) Rumen microbiology. Nottingham University Press, Nottingham, pp 243–264. Demeyer, D. L., and C. J. Van Nevel. 1975. Methanogenesis, an integrated part of carbohydrate fermentation, and its control. Digestion and Metabolism in the Ruminant. Mcdonald IW, Warner ACI, editorsThe University of New England Publishing Unit;Armidale, NSW, Australia: p. 366–382. Demeyer, D., and M. Doreau. 1999. Target and procedures for altering ruminant meat and milk lipids. Proc. Nutr. Soc. 58: 593–607. Doreau, M., and A. Ferlay. 1995. Effect of dietary lipids on nitrogen metabolism in the lumen: a review. Livest. Prod. Sci. 43: 97–110. Eadie, J. M., and A. E. Oxford. 1957. A simple and safe procedure for the removal of holotrich ciliates from the rumen of an adult fistulated sheep. Nature. 179: 485. Egan, A. R., and C. S. McSweeney. (Ed.). (2005). Experimental designs for rumen microbiology. Netherlands: Springer. Erwin, E. S., G. J. Marco, and E. M. Emery. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44: 1768-1770. Eugène, M., H. Archimede, and D. Sauvant. 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest. Prod. Sci. 85: 81–97. Fahmy, W. G., A. O. Bahaa, M. R. Murphy, S. W. Nombekela, R. N. Corley, and J. S. Zhu. 1998. Effect of defaunation and amino acid supplementation on growth and amino acid balance in sheep. Retrieved from: ynet/paperDisplay.cfm?ContentID=238 Fan, J. B., M. S. Chee, and K. L. Gunderson. 2006. Highly parallel genomic assays. Nature Reviews Genetics. 7 (8): 632-644. Fenchel, T., and B. J. Finlay. 1989. Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol. Lett. 65 (3): 311-314. Fenchel, T., and B. J. Finlay. 1992. Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch. Microbiol. 157: 475-480. Fenchel, T., and B. J. Finlay. 2010. Free-living protozoa with endosymbiotic methanogens. In: Hackstein JHP (ed) (Endo) symbiotic methanogens. Springer, Heidelberg. Fernando, S. C., H. T. Purvis II, F. Z. Najar, L. O. Sukharnikov, C. R. Krehbiel, T. G. Nagaraja, B. A. Roe, and U. DeSilva. 2010. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 76 (22): 7482-7490. Ferry, J. G. 1993. Methanogenesis: Ecology, physiology, biochemistry and genetics. New York: Springer. Ferry, J. G., and K. A. Kastead. 2007. Methanogenesis. In: Cavicchioli R (ed) Archaea: molecular and cellular biology. ASM Press, Washington, DC, pp 288-314. Fievez, V., E. Colman, J. Castro-Montoya, I. Stefanov, and B. Vlaeminck. 2012. Milk odd- and branched-chain fatty acids as biomarkers of rumen function—an update. Anim. Feed Sci. Tech. 172: 51-65. Finlay, B. J., G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley, and R. P. Hirt. 1994. Some rumen ciliates have endosymbiotic methanofens. FEMS Microbiol. Lett. 117 (2): 157-161. Flachowsky, G., and P. Lebzien. 2012. Effects of phytogenic substances on rumen fermentation and methane emissions: A proposal for a research process. Anim. Feed Sci. Technol. 176: 70-77. Folch, J., M. Lees, and G. H. S. Stanley. 1957. A simple method for the isolatiob and purification of total lipids from animal tissues. J. Biol. Chem. 226 (1): 497-509. Fonty, G., K. Joblin, M. Chavarot, R. Roux, G. Naylor, and F. Michaellon. 2007. Establishment and development of ruminal hydrogenotrophs in methanogen- free lambs. Appl. Environ. Microbiol. 73 (20): 6391-6403. Food and Agriculture Organization of the United Nations. 2014. FAOSTAT statistics database. [Rome]: FAO. Fouts, D. E., S. Szpakowski, J. Purushe, M. Torralba, R. C. Waterman, M. D. MacNeil, L. J. Alexander, and K. E. Nelson. 2012. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS One. 7 (11): e48289. Garcia, J. L., B. K. Patel, and B. Ollivier. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe. 6 (4): 205-226. Garcia, J. L., B. Ollivier, and W. B. Whitman. 2006. The Prokaryotes (M Dworkin, S Falkow, E Rosenberg, K-H Schleifer, E Stackebrandt eds) Prokaryotes (3): pp 208–230. Springer: New York. Gebeyehu, A., and Y. Mekasha. 2013. Defaunation: effects on feed intake, digestion, rumen metabolism and weight gain. Wudpecker Journal of Agricultural Research. 2 (5): 134-141. Gerber, P., M. MacLeod, C. Opio, T. Vellinga, A. Falcucci, V. Weiler, G. Tempio, G. Gianni, and K. Dietze. 2012. Greenhouse gas emissions from livestock food chains: a global assessment. Bratislava, EAAP. Getachew, G., E. J. DePeters, P. H. Robinson, and J. G. Fadel. 2005. Use of an in vitro rumen gas production technique to evaluate microbial fermentation of ruminant feeds and its impact on fermentation products. Anim. Feed Sci. Technol. 123-124: 547-559. Godoy-Vitorino, F., R. E. Ley, Z. Gao, Z. Pei, H. Ortiz-Zuazaga, L. R. Pericchi, M. A. Garcia-Amado, F. Michaelangeli, M. J. Blaser, J. I. Gordon, and M. G. Domı´nguez-Bello. 2008. Bacterial community in the crop of the hoatzin, a neotropical folivorous flying bird. Appl. Environ. Microbiol. 75 (19): 5905-5912. Graham, D. E., and R. H. White. 2002. Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat. Prod. Rep. 19 (2): 133-147. Guo, T. J., J. Q. Wang, D. P. Bu, K. L. Liu, J. P. Wang, D. Li, S. Y. Luan, and X. K. Huo. 2010. Evaluation of the microbial population in ruminal fluid using real time PCR in steers treated with virginiamycin. Czech. J. Anim. Sci. 55 (7): 276-285. Harith, N., N. Abdullah, and V. Sabaratnam. 2014. Cultivation of Flammulina velutipes mushroom using various agro residues as a fruiting substrate. Pesq. Agropec. Bras. 49 (3): 181-188. Heid, C. A., J. Stevens, K. J. Livak, and P. M. Williams. 1996. Real time quantitative PCR. Genome Res. 6 (10): 986-994. Hergarty, R. S., and R. Gerdes. 1999. Hydrogen production and transfer in the rumen. Recent Adv. Anim. Nutr. Aust. 12: 37-44. Hersom, M., and T. Thrift. 2012. Application of ionophores in cattle diets. Animal Sciences Department, UF/IFAS Extension. AN285. Hook, S. E., A. G. Wright, and B. W. McBride. 2010. Methanogens: methane producers of the rumen and nitigation strategies. Archaea. Article ID: 945785. Hristov, A. N., C. Lee, T. Cassidy, M. Long, K. Heyler, B. Corl, and R. Forster. 2011. Effects of lauric and myristic acids on ruminal fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 94: 382-395. Hristov, A. N., J. Oh, C. Lee, R. Meinen, F. Montes, T. Ott, J. Firkins, A. Rotz, C. Dell, A. Adesogan, W. Yang, J. Tricarico, E. Kebreab, G. Waghorn, J. Dijkstra, and S. Oostring. 2013. Mitigation of greenhouse gas emissions in livestock production – A review of technical options for non-CO2 emissions.Edited by Pierre J. Gerber, Benjamin Henderson and Harinder P.S. Makkar. FAO Animal Production and Health Paper No. 177. FAO, Rome, Italy. Hristov, A. N., T. R. Callaway, C. Lee, and S. E. Dowd. 2012. Rumen bacterial, archaeal, and fungal diversity of dairy cows in response to ingestion of lauric or myristic acid. J. Anim. Sci. 90: 4449-4457. Hungate, R. E. 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14:1-49. Hungate, R. E. 1957. Microorganisms in the rumen of cattle fed a constant ration. Can. J. Microbiol. 3 (2): 289-311. Ifkovitz, R. W., and H. S. Ragheb. 1968. Cellular fatty acid composition and identification of rumen bacteria. Appl. Microbiol. 16: 1406. IPCC. Climate change 2014: synthesis report. In: Pachauri RK, Meyer LA, editors. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: IPCC; 2014. p. 151 Janssen, P. H., and M. Kirs. 2008. Structure of the Archaeal Community of the Rumen. Appl. Environ. Microbiol. 74 (12): 3619-3625. Jiao, J., J. Huang, C. Zhou, and Z. Tan. 2015. Taxonomic identification of ruminal epithelial bacterial diversity during rumen development in goats. Appl. Environ. Microbiol. 81 (10): 3502-3509. Joblin, K. 1999. Ruminal acetogens and their potential to lower ruminant methane emissions.Crop Pasture Sci. 50 (8): 1307-1314. Johnson, K. A., and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73: 2483-2492. Jouany, J. P. 1991. Rumen microbial metabolism and ruminant digestion. INRA. Jouany, J. P. 1996. Effect of rumen protozoa on nitrogen utilization by ruminants. J. Nutr. 126: 1335S-1346S. Kaars-Sijpesteijn, A. 1951 Ruminococcus flavefaciens, a cellulose-decomposing bacterium from the rumen of sheep and cattle. J. Gen. Microb. 5: 869. Kamra, D. N. 2005. Rumen microbial ecosystem. Curr. Sci. 89: 124–135. Karri, S., S. G. Talla, and S. K. Sirohi. 2015. An overview of the role of rumen methanogens in methane emission and its reduction strategies. Afr. J. Biotechnol. 01 (16): 1427-1438. Khafipour, E., S. Li, J. C. Plazier, and D. O. Krause. 2009. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl. Environ. Microbiol. 75 (22): 7115-7124. King, E. E., R. P. Smith, B. St-Pierre, and A. D. Wright. 2011. Differences in the rumen methanogen populations of lactating Jersey and Holstein dairy cows under the same diet regimen. Appl. Environ. Microbiol. 77 (16): 5682-5687. Klevenhusen, F., L. Meile, M. Kreuzer, and C. R. Soliva. 2011. Effects of monolaurin on ruminal methanogens and selected bacterial species from cattle, as determined with the rumen simulation technique. Anaerobe. 17: 232-238. Koike, S., S. Yoshitani, Y. Kobayashi, and K. Tanaka. 2003. Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol. Lett. 229: 23–30. Koike, S., and Y. Kobayashi. 2009. Fibrolytic rumen bacteria: their ecology and functions. Asian-Aust. J. Anim. Sci. 22 (1): 131-138. Kudo, R. R. 1947. Protozoology. Charles C Thomas Publication, Springfield, 778 pp. Kyoto Protocol to the United Nations Framework Convention on Climate Change, Dec. 10, 1997, U.N. Doc FCCC/CP/1997/7/Add.1, 37 I.L.M. 22 (1998). Lambie, S. C., W. J. Kelly, S. C. Leahy, D. Li, K. Reilly, T. A. McAllister, E. R. Valle, G. T. Attwood, and E. Altermann. 2015. The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1. Standards in Genomic Sciences. 15: 57. Lee, H. J., J.Y. Jung, Y. K. Oh, S. S. Lee, E. L. Madsen, and C. O. Jeon. 2012. Comparative survey of rumen microbial communities and metabolites across one carprine and three bovine groups, using bar-coded pyrosequencing and 1H nuclear magnetic resonance sprectroscopy. Appl. Environ. Microbiol. 78: 5983-5993. Lee, S. S., M. B. Chang, N. D. Scollan, R. J. Merry, M. S. Dhanao, P. J. Hobbs, V. J. Theobald, W. J. Maeng, and R. J. Dewhurst. 1999. The fatty acid composition of solid- and liquid-associated bacteria isolated from cows. Proceedings of the British Society of Animal Science Annual Meeting, York, p. 30. Lee, S. Y., and Y. K. Chuang. 2010. The evolution and development of DNA sequencing technology. J. Biomed. Lab Sci. 22 (2): 49-58. Lettat, A., and C. Benchaar. 2013. Diet-induced alterations in total and metabolically active microbes within the rumen of dairy cows. PLoS One. 8 (4): e60978. Li, M., G. B. Penner, E. Hernandez-Sanabria, M. Oba, and L. L. Guan. 2009. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J. Appl. Microbiol. 107 (6): 1924-1934. Liu, J. H., M. L. Zhang, R. Y. Zhang, W. Y. Zhu, and S. Y. Mao. 2016. Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microb. Biotechnol. 9 (2): 257-268. Lozano, M. G., Y. P. Garcia, K. A. A. Arellano, C. E. L. Ortiz, and N. Balagurusamy. 2017. Livestock Methane Emission: Microbial Ecology and Mitigation Strategies. In book: Livestock Science, Edition: First, Chapter: Livestock Methane Emission: Microbial Ecology and Mitigation Strategies, Publisher: InTech, Editors: Selim Sekkin, pp. 51-71. Lynn, D. H., and E. B. Small. 2002. Phylum Ciliophora. In: Lee JJ, Leedale GF, Bradbury P (eds) An illustrated guide to the protozoa. Society of Protozoologists Special Publication Allen Press, Lawrence, pp 371–656. Lynn, D. H., and J. O. Corliss. 1991. Ciliophora. In: Harrison FR, Corliss JO (eds) Microscopic anatomy of invertebrates protozoa. Wiley, New York, pp 333–467. Mackie, R. I., R. I. Aminov, and B. A. White. 2000. Molecular ecology and diversity in gut microbial ecosystems. In: Cronjé PB (ed) Ruminant physiology: digestion, metabolism, growth and reproduction. CAB International, London, pp 61–77. Madian, M. T., J. M. Martinko, and J. Parker. 2003. Brock Biology of Microorganisms (Tenth edition.). Boston: Pearson. Malmuthuge, N., M. Li, Y. Chen, P. Fries, P. J. Griebel, B. Baurhoo, X. Zhao, and L. L. Guan. 2012. Distinct commensal bacteria associated with ingesta and mucosal epithelium in the gastrointestinal tracts of calves and chickens. FEMS Microbiol. Ecol. 79 (2): 337–347. Marounek, M., and D. Duskova. 1999. Metabolism of pectin in rumen bacteria Butyrivibrio fibrisolvens and Prevotella ruminicola. Lett. Appl. Microbiol. 29: 429-433 Marounek, M., S. Bartos, and P. Brezina. 1985. Factors influencing the production of volatile fatty acids from hemicellulose, pectin and starch by mixed culture of rumen microorganisms. Z. Tierphysiol. Tierernahr .Futtermittelkd. 53: 50-58. Martinez-Fernandez, G., S. E. Denman, C. Yang, J. Cheung, M. Mitsumori, and C. S. McSweeney. 2016. Methane inhibition alters the microbial community, hydrogen flow, and fermentation fesponse in the rumen of cattle. Front. Microbiol. 7: 1122. McAllister, T. A., and C. J. Newbold. 2008. Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agri. 48 (2): 7-13. McAllister, T. A., H. D. Bae, G. A. Jones, and K. J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72 (11): 3004–3018. McAllister, T. A., S. J. Meale, E. Valle, L. L. Guan, M. Zhou, W. J. Kelly, G. Herdersom, G. T. Attwood, and P. H. Janssen. 2015. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis. J. Anim. Sci. 93 (4): 1431-1449. McCartney, C. A., I. D. Bull, and R. J. Dewhurst. 2013. Chemical markers for rumen methanogens and methanogenesis. Animal. 7 Suppl. 2: 409-477. McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43 (1): 99-109. McSweeney, C. S., L. L. Blackall, E. Collins, L. L. Conlan, R. I. Webb, S. E. Denman, and D. O. Krause. 2005. Enrichment, isolation and characterisation of ruminal bacteria that degrade non-protein amino acids from the tropical legume Acacia angustissima. Anim. Feed Sci. Technol. 121: 191–204. Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz, and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. (Camb.) 92: 217-222. Minato, H., S. Ishibashi, and T. Hamaoka. 1988. Cellular fatty acid and sugar composition of representative strains of rumen bacteria. J. Gen. Appl. Microbiol. 34: 303-319. Miron, J., D. Ben-Ghedalia, and M. Morrison. 2001. Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84: 1294-1309. Mohammed, R., G. E. Brink, D. M. Stevenson, A. P. Neumann, K. A. Beauchemin, G. Suen, and P. J. Weimer. 2014. Bacterial communities in the rumen of Holstein heifers differ when fed orchardgrass as pasture vs. hay. Front. Microbiol. 5: 689. Moon, Y. H., S. S. Chang, E. T. Kim, W. G. Cho, S. J. Lee, S. S. Lee, and S. J. Cho. 2015. Effects of spent mushroom (Flammulina velutipes) substrates on in vitroruminal fermentation characteristics and digestibility of whole crop sorghum silage. J. Mushrooms. 13 (3): 163-169. Moran, J. 2005. How rumen works. In J. Moran (ed) Tropical dairy farming: feeding management for small holder dairy farmers in the humid tropics. Lanlinks Press, Melbourne, pp 41-49. Morgavi, D. P., E. Forando, C. Martin, and C. J. Newbold. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal. 4 (7): 1024-1036. Morrison, D. F. 1990. The structure of mul-tivariate observation. I. Principal Components. Multivariate statistical methods. 3rd edition. PP. 312-51. Mueller-Harvey, I., A. B. McAllan, M. K. Theodoru, and D. E. Beever. 1988. Phenolics in fibrous crop residues and plant and their effects on the digestion and utilization of carbohydrates and protein in ruminant. Plant Breeding and the Nutritive Value of Crop Residues. Proc. ILCA Addis Ababa, Dec 7-10, 1987. Nagaraja, R., S. MacMillan, J. Kere, C. Jones, S. Griffin, M. Schmatz, J. Terrell, M. Shomaker, C. Jermak, C. Hatt, M. Masisi, S. Mumm, A. Srivastava, G. Pilia, T. Featherstone, R. Mazzarella, S. Kesterson, B. McCauley, B. Railey, F. Burough, V. Nowotny, M. D'Urso, D. States, B. Brownstein, and D. Schlessinger. 1997. X chromosome map at 75-kb STS resolution, revealing extremes of recombination and GC content. Genome Res. 7 (3): 210–222. Nathani, N. M., A. K. Patel, P. S. Dhamannapatil, R. K. Kothari, K. M. Singh, and C. G. Joshi. 2013. Comparative evaluation of rumen metagenome community using qPCR and MG-RAST. AMB Express. 3: 55. Nocek, J. E. 1997. Bovine acidosis: implications on laminitis. J. Dairy Sci. 80 (5): 1005-1028. Nocker, A., and A. K. Camper. 2006. Selective Removal of DNA from Dead Cells of Mixed Bacterial Communities by Use of Ethidium Monoazide. Appl. Environ. Microbiol. 72 (3): 1997-2004. Nossa, C. W., W. E. Oberdorf, L. Yang, J. A. Aas, B. J. Paster, T. Z. DeSantis, E. L. Brodie, D. Malamud, M. A. Poles, and Z. Pei. 2010. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J. Gastroenterol. 16 (33): 4135-4144. Onodera, R., H. Yamaguchi, C. Eguchi, and M. Kandatsu. 1977. Limits of survival of the mingled rumen bacteria in the washed cell suspension of rumen ciliate protozoa. Agric. Biol. Chem. 41: 2465-2466. Patra, A. K., and J. Saxena. 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry. 72 (11-12): 1198-1222. Patra, A., T. Park, M. Ki, and Z. Yu. 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 8: 13. Paul, K., J. O. Nonoh, L. Mikulski, and A. Brune. 2012. 'Methanoplasmatales,' Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl. Environ. Microbiol. 78 (23): 8245-8253. Pedreira, Márcio dos Santos, S. Gisele de Oliveira, O. Primavesi, M. Aparecida de Lima, R. T. S. Frighetto, and T. T. Berchielli. 2013. Methane emissions and estimates of ruminal fermentation parameters in beef cattle fed different dietary concentrate levels. R. Bras. Zootec. 42 (8): 592-598. Penner, G. B., M. Oba, G. Gäbel, and J. R. Aschenbach. 2010. A single mild episode of subacute ruminal acidosis does not affect ruminal barrier function in the short term. J. Dairy Sci. 93 (10): 4838-4845. Phan, C. W., and V. Sabaratnam. 2012. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl. Microbiol. Biotechnol. 96: 863-873. Puniya, A. K., R. Singh, and D. N. Kamra. (Editors). 2015. Rumen microbiology: from evolution to revolution. Springer India, New Delhi.10.1007/978-81-322-2401-3. Rangubhet, K. T., M. C. Mangwe, V. Mlambo, F. K. Fan, and H. I. Chiang. 2017. Enteric methane emissions and protozoa populations in Holstein steers fed spent mushroom (Flammulina velutipes) substrate silage-based diets. Anim. Feed Sci. Technol. Romero-Perez, G. A., K. H. Ominski, T. A. McAllister, and D. O. Krause. 2011. Effect of environmental factors and influence of rumen and hindgut biogeography on bacterial communities in steers. Appl. Environ. Microbiol. 77 (1): 258–268. Russell, J. B. 2002. Rumen microbiology and its role in ruminant nutrition. In: Rumen microbiology and its role in ruminant nutrition, Ithaca, pp 1–121. Russell, J. B., and D. B. Wilson. 1996. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci. 79 (8): 1503-1509. Rustomo, B., J. P. Cant, M. P. Fan, T. F. Duffield, N. E. Odongo, and B. W. McBride. 2006 Acidogenic value of feeds. I. the relationship between the acidogenic value of feeds and in vitro ruminal pH changes. Can. J. Anim. Sci. 86: 109-117. Santra, A., and S. A. Karim. 2000. Growth performance of faunated and defaunated Malpura weaner lambs. Retrieved from: iodicals/anifee/article/PIIS0377840100001619/abstract Schmidely, P., F. Glasser, M. Doreau, and D. Sauvant. 2008. Digestion of fatty acids in ruminants: a meta-analysis of flows and variation factors. 1. Total fatty acids. Animal. 2: 677-690. Sharp, R., C. J. Ziemer, M. D. Stern, and D. A. Stahl. 1998. Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiol. Ecol. 26: 71-78. Shendure, J., and H. Ji. 2008. Next-generation DNA sequencing. Nat. Biotechnol. 26 (10): 1135–1145. Shin, E. C., B. R. Choi, W. J. Lim, S. Y. Hong, C. L. Am, K. M. Cho, Y. K. Kim, J. M. An, J. M. Kang, S. S. Lee, H. Kim, and H. D. Yun. 2004. Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rRNA sequence. Anaerobe. 10: 313-319. Singh, K. M., P. R. Pandya, A. K. Tripathi, G. R. Patel, S. Parnerkar, R. K. Kothari, and C. G. Joshi. 2014. Study of rumen metagenome community using qPCR under different diets. Meta Gene. 2: 191-199. Sirohi, S. K., N. Pandey, B. Singh, and A. K. Puniya. 2010. Rumen methanogens: a review. Indian J. Microbiol. 50 (3): 253–262. Skillman, L. C., A. F. Toovey, A. J. Wiiliams, and A. G. Wright. 2006. Development and validation of a real-Time PCR Method to quantify rumen protozoa and examination of variability between entodinium populations in sheep offered a hay-based diet. Appl. Environ. Microbiol. 72: 200-206. Small, E. B., and D. H. Lynn. 1981. A new macrosystem for the phylum Ciliophora Doflein 1901. BioSystems 14:387–401. Stiverson, J., M. Morrison, and Z. Yu. 2011. Populations of select cultured and uncultured bacteria in the rumen of sheep and the effect of diets and ruminal fractions. Int. J. Microbiol. Article ID: 750613. St-Pierre, B., and A. D. Wright. 2012. Diversity of gut methanogens in herbivorous animals. Animal: 49–56. Stumm, C. K., H. J. Gijzen, and G. D. Vogels. 1982. Association of methanogenic bacteria with ovine rumen ciliates. Br. J. Nutr. 47: 95–99. Suharti, S., D. A. Astuti, E. Wina, and T. Toharmat. 2011. Rumen Microbial Population in the In vitro Fermentation of Different Ratios of Forage and Concentrate in the Presence of Whole Lerak (Sapindus rarak) Fruit Extract. Asian-Aust. J. Anim. Sci. 24 (8): 1086-1091. Sundset, M. A., K. E. Præsteng, I. K. Cann, S. D. Mathiessen, and R. I. Mackie. 2007. Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microbial. Ecol. 54: 424-438. Suzuki, T., P. J. Higgins, and D. R. Crawford. 2000. Control selection for RNA quantitation. Biotechniques. 29: 332–337. Tajima, K., T. Nagamine, H. Matsui, M. Nakamura, and R. I. Aminov. 2001. Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol. Lett. 200 (1): 67-72. Tanner, R. S., and R. S. Wolfe. 1988. Nutritional requirements of Methanomicrobium mobile. Appl. Environ. Microbiol. 54 (3): 625-628. Tapio, I., T. J. Snelling, F. Strozzi, and R. J. Wallace. 2017. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 8: 7. Uyeno, Y. 2015. Impact of the use of phytochemicals on rumen microbial function and enteric methane amelioration. Livestock Methane and Climate Change: Recent Advances in Methane Estimation and Amelioration Strategies (International Training Programme). van Bruggen, J. J. A., C. K. Stumm, and G. D. Vogels. 1983. Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch. Microbiol. 136: 89-95. Van Soest, P. H., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74 (10): 3583-3597. Váradyová, Z., M. Baran, and I. Zeleňák. 2005. Comparison of two in vitro fermentation gas production methods using both rumen fluid and faecal inoculum from sheep. Anim. Feed Sci. Technol. 123-124: 81-94. Vlaeminck, B., C. Dufour, A. M. van Vuuren, A. M. R. Cabrita, R. J. Dewhurst, D. Demeyer, and V. Fievez. 2005. Potential of odd and branched chain fatty acids as microbial markers: evaluation in rumen contents and milk. J. Dairy Sci. 88: 1031-1041. Vlaeminck, B., V. Fievez, A. R. J. Cabrita, A. J. M. Fonseca, and R. J. Dewhurst. 2006. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 131: 389-471. Vlaeminck, B., V. Fievez, H. van Laar, and D. Demeyer. 2004. Rumen odd and branched chain fatty acids in relation to in vitro rumen volatile fatty acid productions and dietary characteristics of incubated substrates. J. Anim. Physiol. Anim. Nutr. 88: 401-411. Walker, N. D., C. J. Newbold, and R. J. Wallace. 2005. Nitrogen metabolism in the rumen. In: Pfeffer E, Hristov A (eds) Nitrogen and phosphorus nutrition of cattle. CABI Publishing, Cambridge, pp 71–115. Wanapat, M., V. Chanthakhoun, and R. Pilajun. 2012. Dietary manipulation to reduce rumen methane production. CMU. J. Nat. Sci. 11 (1): 483-490. Wang, H., X. Pan, C. Wang, M. Wang, and L. Yu. 2015. Effects of different dietary concentrate to forage ratio and thiamine supplementation on the rumen fermentation and ruminal bacterial community in dairy cows. Anim. Prod. Sci. 55: 189-193. Wetterstrand, K. A. 2016. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Available at: Accessed [date of access]. Williams, A. G., and G. S. Coleman. 1992. The rumen protozoa. New York, Springer-Verlag New York Inc. 441 p. Wilsonm R. H., and J. P. Hogan. 1968. Factors limiting the intake of feed by sheep. IV. The intake and digestibility of nature ryegrass. Aust. J. Agr. Res. 19: 567-576. Wright, A. D., A. J. Williams, C. T. Christophersen, S. L. Rodgers, and K. D. Smith. 2004. Molecular diversity of rumen methanogens from sheep in Western Australia. Appl. Environ. Microbiol. 70 (3): 1263-1270. Wright, A. D., K. S. Northwood, and N. E. Obispo. 2009. Rumen- like methanogens identified from the crop of the folivorous South American bird the hoatzin (Opisthocomus hoazin) ISME J. 3(10): 1120-1126. Wright, A. D., X. Ma, and N. E. Obispo. 2008. Methanobrevibacterphylotypes are the dominant methanogens in sheep from Venezuela. Microb. Ecol. 56 (2): 390-394. Xu, C., Y. Cai, J. Zhang, and H. Matsuyama. 2010. Feeding value of total mixed ration silage with spent mushroom substrate. Anim. Sci. J. 81 (2): 194-198. Yáñez-Ruiz, D. R., L. Abecia, and C. J. Newbold. 2015. Manipulating rumen microbiome and fermentation through interventions during early life: a review. Front. Microbiol. 6: 1133. Yang, C., J. A. Rooke, I. Cabeza, and R. J. Wallace. 2016. Nitrate and inhibition of ruminal methanogenesis: microbial ecology, obstacles, and opportunities for lowering methane emissions from ruminant livestock. Front. Microbiol. 7: 132. Yoshii, T., N. Asanuma, and T. Hino. 2003. Number of nitrate- and nitrite-reducing Selenomonas ruminantium in the rumen, and possible factors affecting its growth. Anim. Sci. J. 74 (6): 483-491. Zeng, B., Z. Tan, J. Zeng, S. Tang, C. Tan, C. Zhou, X. Han, and R. Zhong. 2012. Effects of dietary non-ionic surfactant and forage to concentrate ratio on bacterial population and fatty acid composition of rumen bacteria and plasma of goats. Anim. Feed Sci. Tech. 173: 167-176. Zhao, P. T., D. C. Liu, M. Gao, H. L. Hu, H. Q. Han, X. L. Zhou, W. K. Deng, and P. F. Wang. 2011. Effect of different dietary NFC/NDF on populations of B. fibrisolvens, S. bovis and M. elsdenii in rumen of dairy goats. Chinese Journal of Animal Nutrition. 23 (10): 1716-1724.
摘要: 反芻動物係利用瘤胃中共生微生物降解結構性或非結構性碳水化合物,以協助動物攝取飼糧所含營養分;但瘤胃微生物之菌相組成複雜,且多數難以經由分離培養方式鑑定菌種。即時定量聚合酶連鎖反應 (Quantitative real-time polymerase chain reaction, qPCR) 技術結合rRNA基因序列則可針對不易培養之微生物菌群作為一快速、準確定量之分子生物工具。本研究探討以qPCR分析反芻動物中瘤胃微生物相對含量之方法,並利用體外發酵系統 (in vitro fermentation system) 評估飼糧變化對於瘤胃微生物菌相之影響。本試驗分為方法建立與影響評估兩大部分。第一部分以逢機採樣方式,萃取瘤胃液樣品之微生物總體基因體DNA後,利用qPCR技術進行相對定量分析,分析牛隻瘤胃中不同分類之微生物相對含量。結果顯示透過qPCR技術可由屬 (Genus) 層級與目 (Order) 層級觀察瘤胃中細菌、原蟲 (Protozoa)、古生菌 (Archaea) 的相對含量;其中,樣品中細菌與古生菌的相對含量皆與前人研究結果相近。菌相相對含量結果變動幅度大,推測因受到不同因素影響其動態平衡,證明qPCR技術可做為研究瘤胃微生物之有效分析工具。第二部分則以三種比例之百慕達乾草與金針菇廢棄基質青貯料 (100:0、80:20、60:40) 作為體外發酵系統之發酵基質,混合瘤胃液與人工唾液 (Artificial saliva) 進行體外發酵培養,經0小時、24小時、48小時培養後分析其瘤胃微生物菌相之相對含量。結果顯示,在屬層級下,擬桿菌屬與普雷沃氏菌屬皆呈現培養時間增加而菌屬相對比例顯著下降之情形 (P<0.0001;P=0.0046),顯示基質之消耗明顯造成部分細菌於培養液中的相對含量減少。另一方面,以目層級而言,甲烷桿菌目培養24小時之比例相對高於其培養48小時後之數量 (P<0.0001),此結果與甲烷排放數據的增加量相符。由此可知應用qPCR技術可協助體外發酵試驗解析培養液中微生物菌相的相對變化量。綜上所述,qPCR技術可做為一具經濟考量與資料參考性之瘤胃菌相分析方式,而透過體外發酵系統亦可評估qPCR技術分析菌相消長變化的效果。
Ruminants degrade structural or non-structural carbohydrate by the symbiotic rumen microbes for dietary nutrients. However, it is difficult to analyze rumen microbes with conventional culture-dependent assay due to the complexity and difficulty to maintain natural rumen microorganisms in laboratory. By using quantitative real-time polymerase chain reaction (qPCR) combined with 16S rRNA gene sequencing technique, it is possible to characterize rumen microbes precisely and avoid the bias introduced by bacterial culturing. The aim of this study is to validate qPCR technique for analyzing the relative quantitative ratio of rumen microbes in ruminants, and to analyze the effects of various diets on rumen microbial populations using in vitro fermentation system. The rumen fluid samples were randomly obtained, followed by total genomic DNA extrac ion from rumen fluid samples. The relative quantification analysis was performed by using qPCR to analyze the contents of rumen microbes at different taxonomic levels. Results showed that qPCR technique could help figuring out the relative content of ruminal bacteria, protozoa, and archaea by Genus and Order level of classification. The relative contents of bacteria and archaea were close to that of previous reports, suggesting that qPCR could be used as a robust tool for relative quantification of rumen microbes. In addition, different ratios of bermuda hay to spent mushroom (Flammulina velutipes) substrate (SMS) silage (100:0, 80:20, and 60:40) were used as substrates for in vitro fermentation, and microflora analysis were conducted in incubation buffer with 0 hour, 24 hour, and 48 hour incubation. The results showed that the relative ratios of Genus Bacteroides and Prevotella were significantly decreased with the increase of incubation time (P<0.0001 and P=0.0046, respectively), which suggests that substrates consumption would cause the relative reduction of certain bacteria groups. On the other hand, the relative ratio of Order Methanobacteriales with 24 hour fermentation was higher than that with 48 hour fermentation (P<0.0001), in which the result was supported by the increase of methane production. In overall, the qPCR technique was demonstrated to be an economic and valuable tool to profile microflora in rumen.
文章公開時間: 2020-08-15
Appears in Collections:動物科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.